Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Protein Sci ; 14(10): 2562-73, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16195547

RESUMEN

Nucleoside diphosphate (NDP) kinases are ubiquitous enzymes that transfer gamma-phosphates from nucleoside triphosphates to nucleoside diphosphates via a ping-pong mechanism. The important role of this large family of enzymes in controlling cellular functions and developmental processes along with their crystallizability has made them good candidates for structural studies. We recently determined the structure of an evolved version of an NDP kinase from Pyrobaculum aerophilum, an extreme thermophile. This NDP kinase has similarity to the 42 other NDP kinases deposited in the Protein Data Bank (PDB) but differs significantly in sequence, structure, and biophysical properties. The P. aerophilum NDP kinase sequence contains two unique segments not present in other NDP kinases, comprising residues 66-100 and 156-165. We show that deletion mutants of the P. aerophilum NDP kinase lacking either or both of these inserts have an altered substrate specificity, allowing dGTP as the phosphate donor. A structural analysis of the evolved NDP kinase in conjunction with mutagenesis experiments suggests that the substrate specificity of the P. aerophilum NDP kinase is related to the presence of these two inserts.


Asunto(s)
Proteínas Arqueales/química , Evolución Molecular , Nucleósido-Difosfato Quinasa/química , Pyrobaculum/enzimología , Homología Estructural de Proteína , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Nucleótidos de Desoxiguanina/metabolismo , Nucleósido-Difosfato Quinasa/genética , Nucleósido-Difosfato Quinasa/metabolismo , Fosfatos/metabolismo , Estructura Terciaria de Proteína , Pyrobaculum/genética , Eliminación de Secuencia/genética , Especificidad por Sustrato/genética
2.
J Mol Biol ; 335(1): 155-65, 2004 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-14659747

RESUMEN

1,4-beta-D-Xylan is the major component of plant cell-wall hemicelluloses. beta-D-Xylosidases are involved in the breakdown of xylans into xylose and belong to families 3, 39, 43, 52, and 54 of glycoside hydrolases. Here, we report the first crystal structure of a member of family 39 glycoside hydrolase, i.e. beta-D-xylosidase from Thermoanaerobacterium saccharolyticum strain B6A-RI. This study also represents the first structure of any beta-xylosidase of the above five glycoside hydrolase families. Each monomer of T. saccharolyticum beta-xylosidase comprises three distinct domains; a catalytic domain of the canonical (beta/alpha)(8)-barrel fold, a beta-sandwich domain, and a small alpha-helical domain. We have determined the structure in two forms: D-xylose-bound enzyme and a covalent 2-deoxy-2-fluoro-alpha-D-xylosyl-enzyme intermediate complex, thus providing two snapshots in the reaction pathway. This study provides structural evidence for the proposed double displacement mechanism that involves a covalent intermediate. Furthermore, it reveals possible functional roles for His228 as the auxiliary acid/base and Glu323 as a key residue in substrate recognition.


Asunto(s)
Clostridium/enzimología , Cristalografía por Rayos X , Xilosidasas/química , Catálisis , Dominio Catalítico , Glicósido Hidrolasas/química , Estructura Molecular , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Especificidad por Sustrato , Xilosa/química
3.
Nat Biotechnol ; 20(9): 927-32, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12205510

RESUMEN

Structural genomics has the ambitious goal of delivering three-dimensional structural information on a genome-wide scale. Yet only a small fraction of natural proteins are suitable for structure determination because of bottlenecks such as poor expression, aggregation, and misfolding of proteins, and difficulties in solubilization and crystallization. We propose to overcome these bottlenecks by producing soluble, highly expressed proteins that are derived from and closely related to their natural homologs. Here we demonstrate the utility of this approach by using a green fluorescent protein (GFP) folding reporter assay to evolve an enzymatically active, soluble variant of a hyperthermophilic protein that is normally insoluble when expressed in Escherichia coli, and determining its structure by X-ray crystallography. Analysis of the structure provides insight into the substrate specificity of the enzyme and the improved solubility of the variant.


Asunto(s)
Genoma Bacteriano , Genómica/métodos , Nucleósido-Difosfato Quinasa/química , Ingeniería de Proteínas/métodos , Proteínas/química , Proteínas/genética , Evolución Molecular , Proteínas Fluorescentes Verdes , Humanos , Proteínas Luminiscentes , Modelos Moleculares , Nucleósido-Difosfato Quinasa/genética , Conformación Proteica , Pliegue de Proteína , Proteínas Recombinantes/química , Solubilidad , Especificidad por Sustrato , Thermoproteaceae/enzimología , Thermoproteaceae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA