Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Stem Cell Reports ; 18(7): 1534-1546, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37437546

RESUMEN

Hematopoietic stem cells (HSCs) guarantee the continuous supply of all blood lineages during life. In response to stress, HSCs are capable of extensive proliferative expansion, whereas in steady state, HSCs largely remain in a quiescent state to prevent their exhaustion. DNA replication is a very complex process, where many factors need to exert their functions in a perfectly concerted manner. Mini-chromosome-maintenance protein 10 (Mcm10) is an important replication factor, required for proper assembly of the eukaryotic replication fork. In this report, we use zebrafish to study the role of mcm10 during embryonic development, and we show that mcm10 specifically regulates HSC emergence from the hemogenic endothelium. We demonstrate that mcm10-deficient embryos present an accumulation of DNA damages in nascent HSCs, inducing their apoptosis. This phenotype can be rescued by knocking down p53. Taken all together, our results show that mcm10 plays an important role in the emergence of definitive hematopoiesis.


Asunto(s)
Hemangioblastos , Proteínas de Mantenimiento de Minicromosoma , Proteínas de Pez Cebra , Pez Cebra , Animales , Femenino , Apoptosis/genética , Proteínas de Ciclo Celular , Células Madre Hematopoyéticas
2.
Genes (Basel) ; 13(12)2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36553446

RESUMEN

Gout is caused by elevated serum urate leading to the deposition of monosodium urate (MSU) crystals that can trigger episodes of acute inflammation. Humans are sensitive to developing gout because they lack a functional urate-metabolizing enzyme called uricase/urate oxidase (encoded by the UOX gene). A hallmark of long-standing disease is tophaceous gout, characterized by the formation of tissue-damaging granuloma-like structures ('tophi') composed of densely packed MSU crystals and immune cells. Little is known about how tophi form, largely due to the lack of suitable animal models in which the host response to MSU crystals can be studied in vivo long-term. We have previously described a larval zebrafish model of acute gouty inflammation where the host response to microinjected MSU crystals can be live imaged within an intact animal. Although useful for modeling acute inflammation, crystals are rapidly cleared following a robust innate immune response, precluding analysis at later stages. Here we describe a zebrafish uox null mutant that possesses elevated urate levels at larval stages. Uricase-deficient 'hyperuricemic' larvae exhibit a suppressed acute inflammatory response to MSU crystals and prolonged in vivo crystal persistence. Imaging of crystals at later stages reveals that they form granuloma-like structures dominated by macrophages. We believe that uox-/- larvae will provide a useful tool to explore the transition from acute gouty inflammation to tophus formation, one of the remaining mysteries of gout pathogenesis.


Asunto(s)
Gota , Ácido Úrico , Humanos , Animales , Pez Cebra/genética , Urato Oxidasa/genética , Gota/genética , Inflamación
3.
Front Immunol ; 11: 1094, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32582182

RESUMEN

The immediate and natural reaction to both infectious challenges and sterile insults (wounds, tissue trauma or crystal deposition) is an acute inflammatory response. This inflammatory response is mediated by activation of the innate immune system largely comprising professional phagocytes (neutrophils and macrophages). Zebrafish (danio rerio) larvae possess many advantages as a model organism, including their genetic tractability and highly conserved innate immune system. Exploiting these attributes and the live imaging potential of optically transparent zebrafish larvae has greatly contributed to our understanding of how neutrophils and macrophages orchestrate the initiation and resolution phases of inflammatory responses. Numerous bacterial and fungal infection models have been successfully established using zebrafish as an animal model and studies investigating neutrophil and macrophage behavior to sterile insults have also provided unique insights. In this review we highlight how examining the larval zebrafish response to specific bacterial and fungal pathogens has uncovered cellular and molecular mechanisms behind a variety of phagocyte responses, from those that protect the host to those that are detrimental. We also describe how modeling sterile inflammation in larval zebrafish has provided an opportunity to dissect signaling pathways that control the recruitment, and fate, of phagocytes at inflammatory sites. Finally, we briefly discuss some current limitations, and opportunities to improve, the zebrafish model system for studying phagocyte biology.


Asunto(s)
Infecciones Bacterianas/inmunología , Inflamación/inmunología , Micosis/inmunología , Fagocitos/inmunología , Pez Cebra/inmunología , Animales
4.
J Vis Exp ; (156)2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32150157

RESUMEN

Zebrafish (Danio rerio) larvae have developed into a popular model to investigate host-pathogen interactions and the contribution of innate immune cells to inflammatory disease due to their functionally conserved innate immune system. They are also widely used to examine how innate immune cells help guide developmental processes. By taking advantage of the optical transparency and genetic tractability of larval zebrafish, these studies often focus on live imaging approaches to functionally characterize fluorescently marked macrophages and neutrophils within intact animals. Due to their diverse functional heterogeneity and ever-expanding roles in disease pathogenesis, macrophages have received significant attention. In addition to genetic manipulations, chemical interventions are now routinely used to manipulate and examine macrophage behavior in larval zebrafish. Delivery of these drugs is typically limited to passive targeting of free drug through direct immersion or microinjection. These approaches rely on the assumption that any changes to macrophage behavior are the result of a direct effect of the drug on the macrophages themselves, and not a downstream consequence of a direct effect on another cell type. Here, we present our protocols for targeting drugs specifically to larval zebrafish macrophages by microinjecting drug-loaded fluorescent liposomes. We reveal that poloxamer 188-modified drug-loaded blue fluorescent liposomes are readily taken up by macrophages, and not by neutrophils. We also provide evidence that drugs delivered in this way can impact macrophage activity in a manner consistent with the mechanism of action of the drug. This technique will be of value to researchers wanting to ensure targeting of drugs to macrophages and when drugs are too toxic to be delivered by traditional methods like immersion.


Asunto(s)
Antioxidantes/farmacología , Sistemas de Liberación de Medicamentos/métodos , Larva/metabolismo , Liposomas/administración & dosificación , Macrófagos/metabolismo , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Larva/efectos de los fármacos , Liposomas/química , Macrófagos/efectos de los fármacos , Microinyecciones/métodos , Mitocondrias/efectos de los fármacos , Pez Cebra
5.
Front Physiol ; 10: 80, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30809154

RESUMEN

Shear stress, a blood flow-induced frictional force, is essential in the control of endothelial cell (EC) homeostasis. High laminar shear stress (HLSS), as observed in straight parts of arteries, assures a quiescent non-activated endothelium through the induction of Krüppel-like transcription factors (KLFs). Connexin40 (Cx40)-mediated gap junctional communication is known to contribute to a healthy endothelium by propagating anti-inflammatory signals between ECs, however, the molecular basis of the transcriptional regulation of Cx40 as well as its downstream effectors remain poorly understood. Here, we show that flow-induced KLF4 regulated Cx40 expression in a mouse EC line. Chromatin immunoprecipitation in ECs revealed that KLF4 bound to three predicted KLF consensus binding sites in the Cx40 promoter. HLSS-dependent induction of Cx40 expression was confirmed in primary human ECs. The downstream effects of Cx40 modulation in ECs exposed to HLSS were elucidated by an unbiased transcriptomics approach. Cell cycle progression was identified as an important downstream target of Cx40 under HLSS. In agreement, an increase in the proportion of proliferating cell nuclear antigen (PCNA)-positive ECs and a decrease in the proportion of ECs in the G0/G1 phase were observed under HLSS after Cx40 silencing. Transfection of communication-incompetent HeLa cells with Cx40 demonstrated that the regulation of proliferation by Cx40 was not limited to ECs. Using a zebrafish model, we finally showed faster intersegmental vessel growth and branching into the dorsal longitudinal anastomotic vessel in embryos knock-out for the Cx40 orthologs Cx41.8 and Cx45.6. Most significant effects were observed in embryos with a mutant Cx41.8 encoding for a channel with reduced gap junctional function. Faster intersegmental vessel growth in Cx41.8 mutant embryos was associated with increased EC proliferation as assessed by PH3 immunostaining. Our data shows a novel evolutionary-conserved role of flow-driven KLF4-dependent Cx40 expression in endothelial quiescence that may be relevant for the control of atherosclerosis and diseases involving sprouting angiogenesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA