Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 52(35): 12185-12193, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37594409

RESUMEN

Developing effective electrocatalysts for the oxygen evolution reaction (OER) that are highly efficient, abundantly available, inexpensive, and environmentally friendly is critical to improving the overall efficiency of water splitting and the large-scale development of water splitting technologies. We, herein, introduce a facile synthetic strategy for depositing the self-supported arrays of 1D-porous nanoneedles of a manganese cobalt oxide (Mn0.21Co2.79O4: MCO) thin film demonstrating an enhanced electrocatalytic activity for OER in an alkaline electrolyte. For this, an MCO film was synthesized via thermal treatment of a hydroxycarbonate film obtained from a hydrothermal route. The deposited films were characterized through scanning electron microscopy (SEM), X-ray diffractometry (XRD), energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). In contrast to a similar 1D-array of a pristine Co3O4 (CO) nanoneedle film, the MCO film exhibits a remarkably enhanced electrocatalytic performance in the OER with an 85 mV lower overpotential for the benchmark current density of 10 mA cm-2. In addition, the MCO film also demonstrates long-term electrochemical stability for the OER in 1.0 M KOH aqueous electrolyte.

2.
Nanomaterials (Basel) ; 13(14)2023 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-37513150

RESUMEN

Developing highly efficient and durable hydrogen evolution reaction (HER) electrocatalysts is crucial for addressing the energy and environmental challenges. Among the 2D-layered chalcogenides, MoSe2 possesses superior features for HER catalysis. The van der Waals attractions and high surface energy, however, stack the MoSe2 layers, resulting in a loss of edge active catalytic sites. In addition, MoSe2 suffers from low intrinsic conductivity and weak electrical contact with active sites. To overcome the issues, this work presents a novel approach, wherein the in situ incorporated diethylene glycol solvent into the interlayers of MoSe2 during synthesis when treated thermally in an inert atmosphere at 600 °C transformed into graphene (Gr). This widened the interlayer spacing of MoSe2, thereby exposing more HER active edge sites with high conductivity offered by the incorporated Gr. The resulting MoSe2-Gr composite exhibited a significantly enhanced HER catalytic activity compared to the pristine MoSe2 in an acidic medium and demonstrated a superior HER catalytic activity compared to the state-of-the-art Pt/C catalyst, particularly at a high current density beyond ca. 55 mA cm-2. Additionally, the MoSe2-Gr catalyst demonstrated long-term electrochemical stability during HER. This work, thus, presents a facile and novel approach for obtaining an efficient MoSe2 electrocatalyst applicable in green hydrogen production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA