RESUMEN
OBJECTIVE: To assess the growth promoting effect of a recombinant growth hormone (rGH) treatment protocol adjusted on insulin-like growth factor 1 (IGF-1) dosing in children affected by the most severe forms of FGFR3 N540K-mutated hypochondroplasia. STUDY DESIGN: Midterm results of an open-label, single-center, nonrandomized, 2003-2020 pilot trial to final stature, including 6 children (mean age, 2.6 ± 0.7 years; mean height SDS, -3.0 ± 0.5) with the N540K mutation of FGFR3 gene who received an rGH dosage titrated to an IGF-1 level close to 1.5 SDS of the normal range. rGH therapy was interrupted 1 day per week, 1 month per year, and 6 months every 2 years. RESULTS: The mean height SDS increased by 1.9 during the 6.1 ± 0.9-year study period, reaching -0.8 to -1.3 at age 8.7 ± 1 years. The mean±SDS baseline IGF-1 value was -1.6 ± 0.5 before rGH treatment and 1.4±0.3 during the last year of observation. The average cumulative rGH dose was 0.075 ± 0.018 mg/kg/day (range, 0.059-0.100 mg/kg/day). Trunk/leg disproportion was improved. CONCLUSION: IGF-1-dosing rGH treatment durably improves growth and reduces body disproportion in children with severe forms of hypochondroplasia.
Asunto(s)
Enanismo/tratamiento farmacológico , Enanismo/genética , Hormona de Crecimiento Humana/administración & dosificación , Factor I del Crecimiento Similar a la Insulina/metabolismo , Osteocondrodisplasias/tratamiento farmacológico , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Estatura/efectos de los fármacos , Preescolar , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Femenino , Estudios de Seguimiento , Francia , Humanos , Factor I del Crecimiento Similar a la Insulina/efectos de los fármacos , Masculino , Mutación , Osteocondrodisplasias/diagnóstico , Osteocondrodisplasias/genética , Proyectos Piloto , Enfermedades Raras , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo , Medición de Riesgo , Índice de Severidad de la Enfermedad , Factores de Tiempo , Resultado del TratamientoRESUMEN
OBJECTIVE: To analyze vitamin D metabolism and response to ketoconazole, an imidazole derivative that inhibits the vitamin D-1-hydroxylase, in infants with idiopathic hypercalcemia, and hypercalciuria. STUDY DESIGN: Twenty infants (4 days-17 months) with hypercalcemia, severe hypercalciuria, and low parathyroid hormone level, (10 had nephrocalcinosis), including 10 treated with ketoconazole (3-9 mg/kg/day), were followed to the age of 2 to 51 months. Vitamin D receptor expression (VDR), 24-hydroxylase activity, and functional gene polymorphisms of vitamin D metabolism regulators VDR(rs4516035), 1-hydroxylase(rs10877012), 24-hydroxylase(rs2248359), FGF23(rs7955866), Klotho(rs9536314, rs564481, rs648202), were evaluated. RESULTS: Serum calcium levels, which occurred faster in the ketoconazole group (0.7 +/- 0.2 versus 2.4 +/- 0.6 months; P = .0076), and urinary calcium excretion (2.5 +/- 0.5 versus 4.2 +/- 1.7 months) normalized in all patients. Serum 1,25-(OH)2D levels were high normal and positively correlated to 25-(OH)D levels. Serum 24,25-(OH)2D levels were low normal, and skin fibroblasts from 1 patient showed defective up-regulation of the 24-hydroxylase by 1,25-(OH)2D despite normal VDR binding ability. An abnormally low prevalence of haplotype CC/CC for H589H/A749A in Klotho gene was found in patients and family members. CONCLUSIONS: Ketoconazole is a potentially useful and safe agent for treatment of infantile hypercalcemia. Abnormal vitamin D metabolism is suggested as the mechanism, possibly involving defective up-regulation of the 24-hydroxylase by 1,25-(OH)2D3, and the klotho-FGF23 axis.