Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(19)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37834625

RESUMEN

This study assessed the fundamental physical properties and chemical composition of three specific waste engine oil residue (WEORs) asphalt regenerants. Through dynamic shear rheometer and rolling thin-film oven tests, the performance of aged asphalt was evaluated using three key indicators. Thin-layer chromatography investigations probed the WEOR-induced changes in the aging asphalt components, leading to the creation of two novel asphalt regenerants, WEOR-H and WEOR-G. WEOR-G was developed from WEOR-1, liquid rubber, ultraviolet absorber, light shielding agent, and antioxidant, while WEOR-H was formulated from WEOR-2, aromatic oil, and liquid rubber. The study employed differential scanning calorimetry and conventional laboratory tests to analyze the road performance attributes of Ingevity J type regenerant (J), WEOR-G, and WEOR-H. The results indicated that WEORs increase the saturate and aromatic content in asphalt and partially replenish the missing lightweight components of aged asphalt, moderately improving the three key indicators, though the regenerative effect is restricted. Achieving a full restoration of component proportions within aged asphalt to their initial levels proved unattainable, and direct application of any of the three WEORs as asphalt regenerants is impractical. WEOR-H and WEOR-G demonstrated potential in enhancing aged asphalt binder road performance, outpacing three other WEORs. At a 14% dosage, WEOR-G and WEOR-H could increase the 10 °C ductility to 23.5 and 21.4 cm, respectively, effectively counterbalancing the insufficient ability of WEOR-1 and WEOR-2 to restore the low-temperature performance of aged asphalt. Among the regenerants, WEOR-G, possessing superior regenerative effects, the lowest glass transition temperature, and optimal low-temperature deformation resistance, emerged as the most efficacious. This inquiry furnishes vital data support for future applications of WEOR-G asphalt regenerant.

2.
Waste Manag ; 165: 159-178, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37178677

RESUMEN

To cope with the global climate crisis and assist in achieving the carbon neutrality, the use of biomass materials to fully or partially replace petroleum-based products and unrenewable resources is expected to become a widespread solution. Based on the analysis of the existing literature, this paper firstly classified biomass materials with potential application prospects in pavement engineering according to their application and summarized their respective preparation methods and characteristics. The pavement performance of asphalt mixtures with biomass materials was analyzed and summarized, and the economic and environmental benefits of bio-asphalt binder were evaluated. The analysis shows that pavement biomass materials with potential for practical application can be divided into three categories: bio-oil, bio-fiber, and bio-filler. Adding bio-oil to modify or extend the virgin asphalt binder can mostly improve the low temperature performance of asphalt binder. Adding styrene-butadienestyrene (SBS) or other preferable bio-components for composite modification will have a further improved effect. Most of the asphalt mixtures prepared by using bio-oil modified asphalt binders have improved the low temperature crack resistance and fatigue resistance of asphalt mixtures, but the high temperature stability and moisture resistance may decrease. As a rejuvenator, most bio-oils can restore the high and low temperature performance of aged asphalt and recycled asphalt mixture, and improve fatigue resistance. Adding bio-fiber could significantly improve the high temperature stability, low temperature crack resistance and moisture resistance of asphalt mixtures. Biochar as a bio-filler can slow down the asphalt aging process and some other bio-fillers can improve the high temperature stability and fatigue resistance of asphalt binders. Through calculation, it is found that the cost performance of bio-asphalt has the ability to surpass conventional asphalt and has economic benefits. The use of biomass materials for pavements not only reduces pollutants, but also reduces the dependence on petroleum-based products. It has significant environmental benefits and development potential.


Asunto(s)
Hidrocarburos , Petróleo , Biomasa
3.
Materials (Basel) ; 16(10)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37241234

RESUMEN

Long-life pavement construction is an important research direction for sustainable road development. Fatigue cracking of aging asphalt pavement is one of the main reasons that affects its service life, and improving the fatigue resistance of aging asphalt pavement has become a key factor in promoting the development of long-life pavement. In order to enhance the fatigue resistance of aging asphalt pavement, hydrated lime and basalt fiber were selected to prepare a modified asphalt mixture. The resistance to fatigue is evaluated by the four-point bending fatigue test and self-healing compensation test, based on the energy method, the phenomenon-based approach, and other methods. The results of each method of evaluation were also compared and analyzed. The results indicate that the incorporation of hydrated lime can improve the adhesion of the asphalt binder, while the incorporation of basalt fiber can stabilize the internal structure. When incorporated alone, basalt fiber has no noticeable effect, while hydrated lime significantly improves the fatigue performance of the mixture after thermal aging. Mixing both ingredients produced the best improvement effect under various conditions, with a fatigue life improvement of 53%. In the multi-scale evaluation of fatigue performance, it was found that the initial stiffness modulus was unsuitable as a direct evaluation index of fatigue performance. Using the fatigue damage rate or the stable value of dissipated energy change rate as an evaluation index can clearly characterize the fatigue performance of the mixture before and after aging. The self-healing rate and self-healing decay index clearly reflected the fatigue damage healing process under repeated loading and could be used as relevant indices for evaluating the new-scale fatigue performance of asphalt mixtures.

4.
Materials (Basel) ; 16(7)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37048959

RESUMEN

Glass fiber reinforced polymer (GFRP) is the main composite material used in wind turbine blades. In recent years, zero-carbon energy sources such as wind power have been widely used to reduce carbon emissions, resulting in a large amount of waste GFRP, and causing serious environmental problems. To explore efficient ways to recycle waste GFRP, this study explores the impact of adding GFRP powder (nominal maximum particle size ≤ 0.075 mm) on the high and low temperature properties of asphalt mastic. Samples of GFRP asphalt mastics were prepared with filler-asphalt mass ratios of 0.01:1, 0.1:1, 0.8:1, and 1:1, as well as two control samples of limestone filler asphalt mastics with filler-asphalt mass ratios of 0.8:1 and 1:1. The study analyzed the effect of GFRP on the asphalt mastic's performance using temperature sweep, MSCR, and BBR tests. Results showed that the presence of GFRP improved the high-temperature resistance and recovery of asphalt mastic but led to decreased low-temperature crack resistance. The results suggest that GFRP has the potential to be used as a filler in asphalt mastic, with a recommended filler-asphalt mass ratio range of less than 0.8:1 for optimal low-temperature performance. However, further research is necessary to determine the optimal content of GFRP in asphalt mastic and to study its impact on other road performance metrics.

5.
Materials (Basel) ; 15(14)2022 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-35888440

RESUMEN

To examine the pyrolysis and combustion characteristics of epoxy asphalt, the heat and smoke release characteristics were analyzed via TG-MS and cone calorimeter tests, and the surface morphology of residual carbon after pyrolysis and combustion was observed via scanning electron microscopy. The results showed that the smoke produce rate of epoxy asphalt was high in the early stage, and then sharply decreased. Moreover, the total smoke produced was close to that of base asphalt, and the surface of residual carbon presented an irregular network structure, which was rough and loose, and had few holes, however most of them existed in the form of embedded nonpenetration. The heat and smoke release characteristics of epoxy asphalt showed that it is not a simple fusion of base asphalt and epoxy resin. Instead, they promote, interact with, and affect each other, and the influence of epoxy resin was greater than that of base asphalt.

6.
Materials (Basel) ; 15(12)2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35744405

RESUMEN

The production of high-performance, low-cost warm mix additives (WMa) for matrix asphalt remains a challenge. The pyrolysis method was employed to prepare wax-based WMa using waste polypropylene plastic (WPP) as the raw material in this study. Penetration, softening point, ductility, rotational viscosity, and dynamic shear rheological tests were performed to determine the physical and rheological properties of the modified asphalt. The adhesion properties were characterized using the surface free energy (SFE) method. We proved that the pyrolysis temperature and pressure play a synergistic role in the production of wax-based WMa from WPPs. The product prepared at 380 °C and 1.0 MPa (380-1.0) can improve the penetration of matrix asphalt by 61% and reduce the viscosity (135 °C) of matrix asphalt by 48.6%. Furthermore, the modified asphalt shows favorable elasticity, rutting resistance, and adhesion properties; thus, it serves as a promising WMa for asphalt binders.

7.
Materials (Basel) ; 12(16)2019 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-31405044

RESUMEN

The Semi-Flexible Water Retaining Pavement (SFWRP) has the capability to cool down the temperature of the road surface through its evaporation behavior, including absorbing and evaporating water; this is an efficient approach to relieve the heat island effect in a big city. The temperature feedback from different material surface were investigated in this paper in the same test condition, it has been proved that the SFWRP material can remarkably cool down the temperature of the road surface. The mechanism of the material evaporation behavior, including flux calculation formula of the water vapor inside the air void, were studied by inter-phase continuous function, in which the structural properties of the SFWRP material was taken into account. Furthermore, the function calculating the evaporation of the water vapor was then developed in this research through heat and mass transfer analogy. Besides, the calculating results can be captured by the self-coding program in Finite Element Modeling (FEM) for water evaporation simulation. Also, the results of laboratory tests were adopted to validate the calculating model. Finally, it has been proved that the mortar was recommended to be used in semi-flexible water retaining pavement to serve as material with permeable and water retaining property, and the semi-flexible water retaining pavement material is recommended to applied in the surface layer of the permeable pavement.

8.
Materials (Basel) ; 12(8)2019 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-31003521

RESUMEN

The feasibility and effectivity of recycling waste rubber and waste plastic (WRP) into asphalt binder as a waste treatment approach has been documented. However, directly blending WRP with asphalt binder brings secondary environmental pollution. Recent research has shown that the addition of WRP into asphalt binder may potentially improve the workability of asphalt binder without significantly compromising its mechanical properties. This study evaluates the feasibility of using the additives derived from WRP as a multifunctional additive which improves both the workability and mechanical properties of asphalt binder. For this purpose, WRP-derived additives were prepared in laboratory. Then, three empirical characteristics-viscosity, rutting factor, fatigue life were analyzed. Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) were employed to evaluate the effect of WRP-derived additive on the workability and chemical and mechanical properties of base binder. The dispersity of WRP-derived additive inside asphalt binder was also characterized using fluorescence microscope (FM). Results from this study showed that adding WRP-derived additive increases the workability of base binder. The WRP-derived additive appears positive on the high- and low- temperature performance as well as the fatigue life of base binder. The distribution of the WRP-derived additive inside base binder was uniform. In addition, the modification mechanism of WRP-derived additive was also proposed in this paper.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA