Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Arch Insect Biochem Physiol ; 116(4): e22128, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39166358

RESUMEN

High temperature stress has long-term negative effects on the growth and development of silkworm (Bombyx mori). Different silkworm varieties show the different tolerance to high temperature. The induction of autophagy is linked to increased thermotolerance in diverse ectothermic organisms. However, the function of autophagy in the thermotolerant and thermosensitive silkworm strains under high-temperature conditions remains unclear. The thermotolerant Liangguang NO.2 and thermosensitive Jingsong × Haoyue strains were used to explore the role of autophagy in thermotolerance. Here, we first found that the larval body weight gain was increased in the thermosensitive Jingsong × Haoyue strain, but there was no difference in the thermotolerant Liangguang NO.2 strain under high temperature conditions. High temperature stress had a negative influence on the cocoon performance in both the Liangguang NO.2 and Jingsong × Haoyue strains. Additionally, the autophagy-related gene Atg5 mRNA expression in the Liangguang NO.2 strain was upregulated by high temperature, while the expression of Atg12 mRNA was reduced in the Jingsong × Haoyue strain. Titers of 20-Hydroxyecdysone and the ultraspiracle 1 mRNA expression in the Liangguang NO.2 strain were upregulated by high temperature, which might be associated with the induction of autophagy. These results demonstrate the potentially regulatory mechanism of autophagy in silkworms' tolerance to high temperature, providing a theoretical basis for exploring the physiological mechanism of thermotolerance in insects.


Asunto(s)
Autofagia , Bombyx , Calor , Larva , Termotolerancia , Animales , Bombyx/crecimiento & desarrollo , Bombyx/fisiología , Bombyx/genética , Larva/crecimiento & desarrollo , Tracto Gastrointestinal/crecimiento & desarrollo , Ecdisterona , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética
2.
In Vitro Cell Dev Biol Anim ; 60(3): 258-265, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38424378

RESUMEN

It has been demonstrated that angiopoietin-like protein 4 (ANGPTL4) plays an important regulatory role in lipid metabolism and backfat deposition appears to vary in different pig breeds. However, the correlation between ANGPTL4 and backfat deposition have not been well characterized and the role of ANGPTL4 in regulating adipogenesis remains unclear. Therefore, this study aimed to investigate correlation between ANGPTL4 and backfat deposition and to explore the effects of ANGPTL4 on preadipocyte differentiation and the underlying mechanism. Our results showed that the backfat thickness and the ANGPTL4 gene expression of Laiwu pigs were significantly higher than those in DLY pigs and the ANGPTL4 gene expression was positively correlated with backfat thickness both in DLY pigs and Laiwu pigs. Moreover, an increase in ANGPTL4 expression and activation of autophagy were observed during the differentiation of stromal vascular fraction cells. In addition, knockdown of ANGPTL4 inhibited the differentiation of 3T3-L1 cells with decreased expression of LC3-II and ATG5 and increased expression of SQSTM1, suggesting the involvement of autophagy in ANGPTL4-mediated adipogenesis. In conclusion, these results suggested that ANGPTL4 is positively correlated with backfat deposition in pigs and knockdown of ANGPTL4 inhibits adipogenesis of preadipocyte via autophagy, providing new insights into the regulation of fat deposition and to improve the carcass quality and meat quality of porcine.


Asunto(s)
Adipogénesis , Proteína 4 Similar a la Angiopoyetina , Metabolismo de los Lípidos , Animales , Adipogénesis/genética , Proteína 4 Similar a la Angiopoyetina/genética , Autofagia/genética , Diferenciación Celular/genética , Porcinos
3.
Mol Metab ; 73: 101747, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37279828

RESUMEN

OBJECTIVE: Brown adipose tissue (BAT) plays a crucial role in regulating non-shivering thermogenesis under cold exposure. Proline hydroxylases (PHDs) were found to be involved in adipocyte differentiation and lipid deposition. However, the effects of PHDs on regulatory mechanisms of BAT thermogenesis are not fully understood. METHODS: We detected the expression of PHDs in different adipose tissues by using immunoblotting and real-time PCR. Further, immunoblotting, real-time PCR, and immunostaining were performed to determine the correlation between proline hydroxylase 2 (PHD2) and UCP1 expression. Inhibitor of PHDs and PHD2-sgRNA viruses were used to construct the PHD2-deficiency model in vivo and in vitro to investigate the impacts of PHD2 on BAT thermogenesis. Afterward, the interaction between UCP1 and PHD2 and the hydroxylation modification level of UCP1 were verified by Co-IP assays and immunoblotting. Finally, the effect of specific proline hydroxylation on the expression/activity of UCP1 was further confirmed by site-directed mutation of UCP1 and mass spectrometry analysis. RESULTS: PHD2, but not PHD1 and PHD3, was highly enriched in BAT, colocalized, and positively correlated with UCP1. Inhibition or knockdown of PHD2 significantly suppressed BAT thermogenesis under cold exposure and aggravated obesity of mice fed HFD. Mechanistically, mitochondrial PHD2 bound to UCP1 and regulated the hydroxylation level of UCP1, which was enhanced by thermogenic activation and attenuated by PHD2 knockdown. Furthermore, PHD2-dependent hydroxylation of UCP1 promoted the expression and stability of UCP1 protein. Mutation of the specific prolines (Pro-33, 133, and 232) in UCP1 significantly mitigated the PHD2-elevated UCP1 hydroxylation level and reversed the PHD2-increased UCP1 stability. CONCLUSIONS: This study suggested an important role for PHD2 in BAT thermogenesis regulation by enhancing the hydroxylation of UCP1.


Asunto(s)
Obesidad , Prolil Hidroxilasas , Animales , Ratones , Tejido Adiposo Pardo/metabolismo , Hidroxilación , Obesidad/metabolismo , Prolina/metabolismo , Prolil Hidroxilasas/metabolismo , Termogénesis/fisiología
4.
Int J Mol Sci ; 23(14)2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35886871

RESUMEN

It has been demonstrated that vascular endothelial growth factor B (VEGFB) and vascular endothelial growth factor receptor 1 (VEGFR1) play a vital role in regulating vascular biological function. However, the role of VEGFB and VEGFR1 in regulating fat deposition and skeletal muscle growth remains unclear. Therefore, this study was conducted to investigate the effects of VEGFB and VEGFR1 on fat deposition and skeletal muscle growth in mice. Our results showed that knockdown of VEGFB decreased body weight and iWAT index, stimulated the browning of mice iWAT with increased expression of UCP1, decreased the diameters of adipocytes, and elevated energy expenditure. In contrast, knockdown of VEGFB increased gastrocnemius (GAS) muscle index with increased proliferation of GAS muscle by expression of PCNA and Cyclin D1. Meanwhile, knockdown of endothelial VEGFR1 induced the browning of iWAT with increased expression of UCP1 and decreased diameters of adipocytes. By contrast, knockdown of endothelial VEGFR1 inhibited GAS muscle differentiation with decreased expression of MyoD. In conclusion, these results suggested that the loss of VEGFB/VEGFR1 signaling is associated with enhanced browning of inguinal white adipose tissue and skeletal muscle development. These results provided new insights into the regulation of skeletal muscle growth and regeneration, as well as fat deposition, suggesting the potential application of VEGFB/VEGFR1 as an intervention for the restriction of muscle diseases and obesity and related metabolic disorders.


Asunto(s)
Tejido Adiposo Pardo , Tejido Adiposo Blanco , Desarrollo de Músculos , Factor B de Crecimiento Endotelial Vascular , Receptor 1 de Factores de Crecimiento Endotelial Vascular , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Ratones , Ratones Endogámicos C57BL , Desarrollo de Músculos/genética , Músculo Esquelético/metabolismo , Termogénesis , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor B de Crecimiento Endotelial Vascular/genética , Factor B de Crecimiento Endotelial Vascular/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo
5.
Food Funct ; 13(3): 1232-1245, 2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35019933

RESUMEN

The mechanisms whereby fish oil rich in EPA and DHA promotes BAT thermogenesis and WAT browning are not fully understood. Thus, this study aimed to investigate the effects of cytochrome P450 (CYP) epoxygenase-derived EPA and DHA oxylipins 17,18-EpETE and 19,20-EpDPE on BAT thermogenesis and WAT browning and explore the underlying mechanism. Stromal vascular cells (SVCs) were subjected to 17,18-EpETE or 19,20-EpDPE treatment and mice were treated with the CYP epoxygenase inhibitor, the thermogenic marker genes were detected and the involvement of GPR120 and AMPKα were assessed. The in vitro results indicated that 17,18-EpETE and 19,20-EpDPE induced brown and beige adipocyte thermogenesis, with increased expression of thermogenic marker gene UCP1 in differentiated SVCs. Meanwhile, the expression of GPR120 and phosphorylation of AMPKα were increased in response to these two oxylipins. However, the inhibition of GPR120 and AMPKα inhibited the promotion of adipocyte thermogenesis. In addition, in the presence of CYP epoxygenase inhibitor MS-PPOH, EPA and DHA had no effect on increasing UCP1 expression in differentiated SVCs. Consistent with the in vitro results, the in vivo findings demonstrated that fish oil had no body fat-lowering effects and no effects on enhancing energy metabolism, iBAT thermogenesis and iWAT browning in mice fed HFD after intraperitoneal injection of CYP epoxygenase inhibitor SKF-525A. Moreover, fish oil had no effect on the elevation of GPR120 expression and activation of AMPKα in iBAT and iWAT in mice fed HFD after intraperitoneal injection of SKF-525A. In summary, our results showed that CYP epoxygenase-derived EPA and DHA oxylipins 17,18-EpETE and 19,20-EpDPE promoted BAT thermogenesis and WAT browning through the GPR120-AMPKα signaling pathway, which might contribute to the thermogenic and anti-obesity effects of fish oil.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Ácidos Araquidónicos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Oxilipinas/metabolismo , Receptores Acoplados a Proteínas G/genética , Transducción de Señal/efectos de los fármacos , Termogénesis/efectos de los fármacos
6.
Int J Mol Sci ; 22(24)2021 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-34948148

RESUMEN

It has been demonstrated that vascular endothelial growth factor B (VEGFB) plays a vital role in regulating vascular biological function. However, the role of VEGFB in regulating skeletal muscle cell proliferation and differentiation remains unclear. Thus, this study aimed to investigate the effects of VEGFB on C2C12 myoblast proliferation and differentiation and to explore the underlying mechanism. For proliferation, VEGFB significantly promoted the proliferation of C2C12 myoblasts with the upregulating expression of cyclin D1 and PCNA. Meanwhile, VEGFB enhanced vascular endothelial growth factor receptor 1 (VEGFR1) expression and activated the PI3K/Akt signaling pathway in a VEGFR1-dependent manner. In addition, the knockdown of VEGFR1 and inhibition of PI3K/Akt totally abolished the promotion of C2C12 proliferation induced by VEGFB, suggesting that VEGFB promoted C2C12 myoblast proliferation through the VEGFR1-PI3K/Akt signaling pathway. Regarding differentiation, VEGFB significantly stimulated the differentiation of C2C12 myoblasts via VEGFR, with elevated expressions of MyoG and MyHC. Furthermore, the knockdown of VEGFR1 rather than NRP1 eliminated the VEGFB-stimulated C2C12 differentiation. Moreover, VEGFB activated the PI3K/Akt/mTOR signaling pathway in a VEGFR1-dependent manner. However, the inhibition of PI3K/Akt/mTOR blocked the promotion of C2C12 myoblasts differentiation induced by VEGFB, indicating the involvement of the PI3K/Akt pathway. To conclude, these findings showed that VEGFB promoted C2C12 myoblast proliferation and differentiation via the VEGFR1-PI3K/Akt signaling pathway, providing new insights into the regulation of skeletal muscle development.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Mioblastos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Factor B de Crecimiento Endotelial Vascular/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Línea Celular , Ratones , Factor B de Crecimiento Endotelial Vascular/farmacología
7.
Anim Nutr ; 7(2): 365-375, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34258424

RESUMEN

Nutritional diarrhea and subsequent performance degradation in weaned piglets are major challenges for the pig industry. Bile acids (BA) can be added to the diet as emulsifiers. This experiment was conducted to investigate the effects of chenodeoxycholic acid (CDCA), a major primary BA, on growth performance, serum metabolic profiles and gut health in weaned piglets. A total of 72 healthy weaned piglets were randomly assigned to the control (CON) and the CDCA groups, which were feed a basal diet and the basal diet supplemented with 200 mg/kg CDCA for 30 d, respectively. Our results demonstrated that CDCA significantly increased final BW and average daily gain (ADG), decreased feed-to-gain (F:G) ratio and tended to reduce diarrhea incidence. In addition, CDCA increased the villus height-to-crypt depth (V:C) ratio, elevated goblet cell numbers and the expression of tight junction proteins, suggesting the enhancement of intestinal barrier function. As an emulsifier, CDCA increased jejunal lipase activity and the mRNA expression of pancreatic lipases. CDCA supplementation also altered the serum metabolic profiles, including increasing the levels of indole 3-acetic acid, N'-formylkynurenine and theobromine that were beneficial for gut health. Moreover, the relative abundance of 2 beneficial gut bacteria, Prevotella 9 and Prevotellaceae TCG-001, were increased, whereas the relative abundance of a harmful bacteria, Dorea, was decreased in the gut of weaned piglets supplemented with CDCA. Importantly, the altered serum metabolic profiles showed a strong correlation with the changed gut bacteria. In conclusion, CDCA improved the growth performance of weaned piglets by improving intestinal morphology and barrier function, and enhancing lipid digestion, accompanied by alterations of serum metabolic profiles, and changes in relative abundance of certain gut bacteria.

8.
J Agric Food Chem ; 68(45): 12631-12640, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33140642

RESUMEN

Lauric acid (LA) has been implicated in the prevention/treatment of obesity. However, the role of LA in modulating an obesity-related female reproductive disorder remains largely unknown. Here, female mice were fed a control diet, high-fat diet (HFD), or HFD supplemented with 1% LA. The results demonstrated that the HFD-induced estrous cycle irregularity and the reduction of serum follicle-stimulating hormone (FSH) were alleviated by LA supplementation. In possible mechanisms, LA supplementation led to significant increase in serum lipid metabolites such as sphingomyelin and lysophosphatidylcholine containing LA (C12:0) and the improvement of glucose metabolism in mice fed HFD. Moreover, impaired body energy metabolism and weakened brown adipose tissue (BAT) thermogenesis of HFD-fed mice were improved by LA supplementation. Together, these findings showed that LA supplementation alleviated HFD-induced estrous cycle irregularity, possibly associated with altered serum lipid metabolites, improved glucose metabolism, body energy metabolism, and BAT thermogenesis. These findings suggested the potential application of LA in alleviating obesity and its related reproductive disorders.


Asunto(s)
Ácidos Láuricos/administración & dosificación , Trastornos de la Menstruación/tratamiento farmacológico , Termogénesis/efectos de los fármacos , Animales , Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos/análisis , Metabolismo Energético/efectos de los fármacos , Femenino , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Ciclo Menstrual/efectos de los fármacos , Trastornos de la Menstruación/metabolismo , Trastornos de la Menstruación/fisiopatología , Ratones , Ratones Endogámicos C57BL
9.
FASEB J ; 34(5): 7103-7117, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32246800

RESUMEN

Bile acids (BAs) have been implicated in regulation of intestinal epithelial signaling and function. This study aimed to investigate the effects of hyodeoxycholic acid (HDCA) on intestinal epithelial cell proliferation and explore the underlying mechanisms. IPEC-J2 cells and weaned piglets were treated with HDCA and the contributions of cellular signaling pathways, BAs metabolism profiles and gut bacteria were assessed. In vitro, HDCA suppressed IPEC-J2 proliferation via the BAs receptor FXR but not TGR5. In addition, HDCA inhibited the PI3K/AKT pathway, while knockdown of FXR or constitutive activation of AKT eliminated the inhibitory effects of HDCA, suggesting that FXR-dependent inhibition of PI3K/AKT pathway was involved in HDCA-suppressed IPEC-J2 proliferation. In vivo, dietary HDCA inhibited intestinal expression of proliferative markers and PI3K/AKT pathway in weaned piglets. Meanwhile, HDCA altered the BAs metabolism profiles, with decrease in primary BA and increase in total and secondary BAs in feces, and reduction of conjugated BAs in serum. Furthermore, HDCA increased abundance of the gut bacteria associated with BAs metabolism, and thereby induced BAs profiles alternation, which might indirectly contribute to HDCA-suppressed cell proliferation. Together, HDCA suppressed intestinal epithelial cell proliferation through FXR-PI3K/AKT signaling pathway, accompanied by alteration of BAs metabolism profiles induced by gut bacteria.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Ácido Desoxicólico/administración & dosificación , Mucosa Intestinal/efectos de los fármacos , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Suplementos Dietéticos , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Masculino , Metaboloma/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal/efectos de los fármacos , Sus scrofa , Porcinos
10.
Food Funct ; 11(4): 3657-3667, 2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32296804

RESUMEN

This study aimed to investigate the effects of conjugated linoleic acid (CLA) on intestinal epithelial barrier function and explore the underlying mechanisms. IPEC-J2 cells and mice were treated with different CLA isomers. The intestinal epithelial barrier function determined by transepithelial electrical resistance (TEER), the expression of tight junction proteins, and the involvement of G-protein coupled receptor 120 (GPR120), intracellular calcium ([Ca2+]i) and myosin light chain kinase (MLCK) were assessed. In vitro, c9, t11-CLA, but not t10, c12-CLA isomer, impaired epithelial barrier function in IPEC-J2 by downregulating the expression of tight junction proteins. Meanwhile, c9, t11-CLA isomer enhanced GPR120 expression, while knockdown of GPR120 eliminated the impaired epithelial barrier function induced by c9, t11-CLA isomer. In addition, c9, t11-CLA isomer increased [Ca2+]i and activated the MLCK signaling pathway in a GPR120-dependent manner. However, chelation of [Ca2+]i reversed c9, t11-CLA isomer-induced MLCK activation and the epithelial barrier function impairment of IPEC-J2. Furthermore, inhibition of MLCK totally abolished the impairment of epithelial barrier function induced by c9, t11-CLA. In vivo, dietary supplementation of c9, t11-CLA rather than t10, c12-CLA isomer decreased the expression of intestinal tight junction proteins and GPR120, increased intestinal permeability, and activated the MLCK signaling pathway in mice. Taken together, our findings showed that c9, t11-CLA, but not t10, c12-CLA isomer, impaired intestinal epithelial barrier function in IPEC-J2 cells and mice through activation of GPR120-[Ca2+]i and the MLCK signaling pathway. These data provided new insight into the regulation of the intestinal epithelial barrier by different CLA isomers and more references for CLA application in humans and animals.


Asunto(s)
Intestinos/efectos de los fármacos , Ácidos Linoleicos Conjugados/farmacología , Quinasa de Cadena Ligera de Miosina/metabolismo , Animales , Células Cultivadas/efectos de los fármacos , Regulación hacia Abajo , Células Epiteliales/efectos de los fármacos , Isomerismo , Ácidos Linoleicos Conjugados/química , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal
11.
Stem Cell Res Ther ; 9(1): 55, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29523193

RESUMEN

BACKGROUND: Although many reports show that various kinds of stem cells have the ability to recover function in premature ovarian aging, few studies have looked at stem cell treatment of natural ovarian aging (NOA). We designed this experimental study to investigate whether human amniotic mesenchymal stem cells (hAMSCs) retain the ability to restore ovarian function, and how hAMSCs work in this process. METHODS: To build the NOA mouse model, the mice were fed for 12-14 months normally with young fertile female mice as the normal control group (3-5 months old). Hematoxylin and eosin staining permitted follicle counting and showed the ovarian tissue structure. An enzyme-linked immunosorbent assay was used to detect the serum levels of the sex hormones estradiol (E2), anti-mullerian hormone (AMH), and follicle-stimulating hormone (FSH). The proliferation rate and marker expression level of human ovarian granule cells (hGCs) (ki67, AMH, FSH receptor, FOXL2, and CYP19A1) were measured by flow cytometry (FACS). Cytokines (growth factors) were measured by a protein antibody array methodology. After hepatocyte growth factor (HGF) and epidermal growth factor (EGF) were co-cultured with hGCs, proliferation (ki67) and apoptosis (Annexin V) levels were analyzed by FACS. After HGF and EGF were injected into the ovaries of natural aging mice, the total follicle numbers and hormone levels were tested. RESULTS: After the hAMSCs were transplanted into the NOA mouse model, the hAMSCs exerted a therapeutic activity on mouse ovarian function by improving the follicle numbers over four stages. In addition, our results showed that hAMSCs significantly promoted the proliferation rate and marker expression level of ovarian granular cells that were from NOA patients. Meanwhile, we found that the secretion level of EGF and HGF from hAMSCs was higher than other growth factors. A growth factor combination (HGF with EGF) improved the proliferation rate and inhibited the apoptosis rate more powerfully after a co-culture with hGCs, and total follicle numbers and hormone levels were elevated to a normal level after the growth factor combination was injected into the ovaries of the NOA mouse model. CONCLUSIONS: These findings provide insight into the notion that hAMSCs play an integral role in resistance to NOA. Furthermore, our present study demonstrates that a growth factor combination derived from hAMSCs plays a central role in inhibiting ovarian aging. Therefore, we suggest that hAMSCs improve ovarian function in natural aging by secreting HGF and EGF.


Asunto(s)
Factor de Crecimiento Epidérmico/metabolismo , Factor de Crecimiento de Hepatocito/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Insuficiencia Ovárica Primaria/terapia , Adulto , Amnios/citología , Animales , Apoptosis , Proliferación Celular , Células Cultivadas , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Ovario/crecimiento & desarrollo , Ovario/fisiología
12.
J Cell Physiol ; 233(9): 7055-7066, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29384212

RESUMEN

The N6-methyladenosine (m6A) modification plays a central role in epigenetic regulation of the mammalian transcriptome. m6A can be demethylated by the fat mass- and obesity-associated (FTO) protein and the α-ketoglutarate-dependent dioxygenase alkB homolog 5 (ALKBH5) protein. Much less is known about that whether m6A content is involved in POI (premature ovarian insufficiency) disease. In this case-controlled study, 69 POI and 53 tubal occlusion patients were recruited from the reproduction centers in our hospital. For the POI animal model experiment, ovarian tissue was obtained from ten POI and nine healthy mice. An m6A test kit was developed to determine the m6A content in the RNA, and qPCR and western blot were used to examine the mRNA and protein expression levels of FTO and ALKBH5. FACS was used to measure the levels of proliferation and apoptosis, and siRNA was used to establish FTO and ALKBH5 knockdown cell lines. Our results showed that the m6A content in the RNA from POI patients and POI mice was significantly higher than control groups and that POI was characterized by the content of m6A. The mRNA and protein expression levels of FTO were significantly lower in the POI patients than control group and were associated with a risk of POI. These data suggest that the decreased mRNA and protein expression levels of FTO may be responsible for the increase in m6A in POI, which may further increase the risk of complications of POI. High m6A should be investigated further as a novel potential biomarker of POI.


Asunto(s)
Adenosina/análogos & derivados , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Regulación de la Expresión Génica , Infertilidad/genética , Adenosina/metabolismo , Adulto , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Animales , Apoptosis , Biomarcadores/metabolismo , Proliferación Celular , Femenino , Silenciador del Gen , Células de la Granulosa/metabolismo , Humanos , Ratones Endogámicos ICR , Insuficiencia Ovárica Primaria/genética
13.
J Cell Mol Med ; 21(8): 1605-1618, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28244646

RESUMEN

Human embryonic stem cells (hESCs) can self-renew and differentiate into all cell lineages. E2 is known to exhibit positive effects on embryo development. Although the importance of E2 in many physiological processes has been reported, to date few researchers have investigated the effects of E2 on hESCs differentiation. We studied the effects of E2 on dopamine (DA) neuron induction of hESCs and its related signalling pathways using the three-stage protocol. In our study, 0.1 µM E2 were applied to hESCs-derived human embryoid bodies (hEBs) and effects of E2 on neural cells differentiation were investigated. Protein and mRNA level assay indicated that E2 up-regulated the expression of insulin-like growth factors (IGF)-1, ectoderm, neural precursor cells (NPC) and DA neuron markers, respectively. The population of hESC-derived NPCs and DA neurons was increased to 92% and 93% to that of DMSO group, respectively. Furthermore, yield of DA neuron-secreted tyrosine hydroxylase (TH) and dopamine was also increased. E2-caused promotion was relieved in single inhibitor (ICI or JB1) group partly, and E2 effects were repressed more stronger in inhibitors combination (ICI plus JB1) group than in single inhibitor group at hEBs, hNPCs and hDA neurons stages. Owing to oestrogen receptors regulate multiple brain functions, when single or two inhibitors were used to treat neural differentiation stage, we found that oestrogen receptor (ER)ß but not ERα is strongly repressed at the hNPCs and hDA neurons stage. These findings, for the first time, demonstrate the molecular cascade and related cell biology events involved in E2-improved hNPC and hDA neuron differentiation through cross-talk between IGF-1 and ERß in vitro.


Asunto(s)
Neuronas Dopaminérgicas/efectos de los fármacos , Estradiol/farmacología , Receptor beta de Estrógeno/metabolismo , Células Madre Embrionarias Humanas/efectos de los fármacos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Células-Madre Neurales/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Línea Celular , Dopamina/metabolismo , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/metabolismo , Cuerpos Embrioides/citología , Cuerpos Embrioides/efectos de los fármacos , Cuerpos Embrioides/metabolismo , Receptor beta de Estrógeno/antagonistas & inhibidores , Receptor beta de Estrógeno/genética , Regulación de la Expresión Génica , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Humanos , Factor I del Crecimiento Similar a la Insulina/genética , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Oligopéptidos/farmacología , Transducción de Señal , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo
14.
J Agric Food Chem ; 64(40): 7530-7539, 2016 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-27648945

RESUMEN

Excess 2-hydroxy-(4-methylthio)butanoic acid (HMB) supplementation induces hyperhomocysteinemia, which contributes to hepatic cholesterol accumulation. However, it is unclear whether and how high levels of HMB break hepatic cholesterol homeostasis in nursery piglets. In this study, HMB oversupplementation suppressed food intake and decreased body weight in nursery piglets. Hyperhomocysteinemia and higher hepatic cholesterol accumulation were observed in HMB groups. Accordingly, HMB significantly increased the protein content of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) and glycine N-methyltransferase (GNMT) but decreased that of acyl-coenzyme A:cholesterol acyltransferase-1 (ACAT1). Significant downregulation of miR-150, miR-181d-5p, and miR-296-3p targeting the 3'-untranslated regions (UTRs) of GNMT and HMGCR was detected in the liver of HMB-treated piglets, and their functional validation was confirmed by dual-luciferase reporter assay. Furthermore, hypermethylation of miR-150 promoter was detected in association with suppressed miR-150 expression in the livers of HMB-treated piglets. This study indicated a new mechanism of hepatic cholesterol unhomeostasis by dietary methyl donor supplementation.


Asunto(s)
Colesterol/metabolismo , Metilación de ADN , Hígado/efectos de los fármacos , Metionina/análogos & derivados , MicroARNs/metabolismo , Regiones no Traducidas 3' , Acetil-CoA C-Acetiltransferasa/genética , Alimentación Animal , Animales , Animales Recién Nacidos , Peso Corporal/efectos de los fármacos , Colesterol/genética , Regulación hacia Abajo , Regulación de la Expresión Génica/efectos de los fármacos , Glicina N-Metiltransferasa/genética , Hidroximetilglutaril-CoA Reductasas/genética , Hígado/metabolismo , Metionina/genética , Metionina/metabolismo , Metionina/farmacología , Regiones Promotoras Genéticas , Sus scrofa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA