Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 1594, 2022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-35332162

RESUMEN

Ubiquitin ligases control the degradation of core clock proteins to govern the speed and resetting properties of the circadian pacemaker. However, few studies have addressed their potential to regulate other cellular events within clock neurons beyond clock protein turnover. Here, we report that the ubiquitin ligase, UBR4/POE, strengthens the central pacemaker by facilitating neuropeptide trafficking in clock neurons and promoting network synchrony. Ubr4-deficient mice are resistant to jetlag, whereas poe knockdown flies are prone to arrhythmicity, behaviors reflective of the reduced axonal trafficking of circadian neuropeptides. At the cellular level, Ubr4 ablation impairs the export of secreted proteins from the Golgi apparatus by reducing the expression of Coronin 7, which is required for budding of Golgi-derived transport vesicles. In summary, UBR4/POE fulfills a conserved and unexpected role in the vesicular trafficking of neuropeptides, a function that has important implications for circadian clock synchrony and circuit-level signal processing.


Asunto(s)
Relojes Circadianos , Proteínas de Drosophila , Neuropéptidos , Animales , Proteínas CLOCK/metabolismo , Proteínas de Unión a Calmodulina/metabolismo , Relojes Circadianos/genética , Ritmo Circadiano , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ratones , Neuropéptidos/genética , Neuropéptidos/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
2.
Cell Rep ; 12(8): 1272-88, 2015 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-26279567

RESUMEN

The pacemaker properties of the suprachiasmatic nucleus (SCN) circadian clock are shaped by mechanisms that influence the expression and behavior of clock proteins. Here, we reveal that G-protein-coupled receptor kinase 2 (GRK2) modulates the period, amplitude, and entrainment characteristics of the SCN. Grk2-deficient mice show phase-dependent alterations in light-induced entrainment, slower recovery from jetlag, and longer behavioral rhythms. Grk2 ablation perturbs intrinsic rhythmic properties of the SCN, increasing amplitude and decreasing period. At the cellular level, GRK2 suppresses the transcription of the mPeriod1 gene and the trafficking of PERIOD1 and PERIOD2 proteins to the nucleus. Moreover, GRK2 can physically interact with PERIOD1/2 and promote PERIOD2 phosphorylation at Ser545, effects that may underlie its ability to regulate PERIOD1/2 trafficking. Together, our findings identify GRK2 as an important modulator of circadian clock speed, amplitude, and entrainment by controlling PERIOD at the transcriptional and post-translational levels.


Asunto(s)
Núcleo Celular/metabolismo , Relojes Circadianos/genética , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Proteínas Circadianas Period/metabolismo , Procesamiento Proteico-Postraduccional , Transporte Activo de Núcleo Celular , Animales , Línea Celular , Células Cultivadas , Quinasa 2 del Receptor Acoplado a Proteína-G/genética , Masculino , Ratones , Proteínas Circadianas Period/genética , Fosforilación , Unión Proteica
3.
PLoS One ; 9(8): e103103, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25084275

RESUMEN

Circadian rhythms of behavior and physiology are driven by the biological clock that operates endogenously but can also be entrained to the light-dark cycle of the environment. In mammals, the master circadian pacemaker is located in the suprachiasmatic nucleus (SCN), which is composed of individual cellular oscillators that are driven by a set of core clock genes interacting in transcriptional/translational feedback loops. Light signals can trigger molecular events in the SCN that ultimately impact on the phase of expression of core clock genes to reset the master pacemaker. While transcriptional regulation has received much attention in the field of circadian biology in the past, other mechanisms including targeted protein degradation likely contribute to the clock timing and entrainment process. In the present study, proteome-wide screens of the murine SCN led to the identification of ubiquitin protein ligase E3 component N-recognin 4 (UBR4), a novel E3 ubiquitin ligase component of the N-end rule pathway, as a time-of-day-dependent and light-inducible protein. The spatial and temporal expression pattern of UBR4 in the SCN was subsequently characterized by immunofluorescence microscopy. UBR4 is expressed across the entire rostrocaudal extent of the SCN in a time-of-day-dependent fashion. UBR4 is localized exclusively to arginine vasopressin (AVP)-expressing neurons of the SCN shell. Upon photic stimulation in the early subjective night, the number of UBR4-expressing cells within the SCN increases. This study is the first to identify a novel E3 ubiquitin ligase component, UBR4, in the murine SCN and to implicate the N-end rule degradation pathway as a potential player in regulating core clock mechanisms and photic entrainment.


Asunto(s)
Relojes Circadianos/genética , Regulación de la Expresión Génica , Luz , Proteínas Asociadas a Microtúbulos/genética , Núcleo Supraquiasmático/metabolismo , Ubiquitina-Proteína Ligasas/genética , Animales , Proteínas de Unión a Calmodulina , Línea Celular , Ritmo Circadiano/genética , Masculino , Ratones , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/metabolismo , Péptidos/genética , Péptidos/metabolismo , Fotoperiodo , Unión Proteica , Transporte de Proteínas , Proteoma , Proteómica/métodos , Reproducibilidad de los Resultados , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo
4.
Crit Rev Oncog ; 19(6): 505-16, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25597360

RESUMEN

In 1984, a cytosolic protein was isolated from bovine brain and coined phosphatidylethanolamine binding protein (PEBP) to describe its phospholipid-binding potential. Its cellular function remained elusive for more than a decade until it was discovered that PEBP had the ability to suppress the Raf1-mitogen activated protein kinase (MAPK) pathway, earning it the new name of Raf1 kinase inhibitory protein (RKIP). This milestone discovery has paved the way for numerous studies that have now extended the reach of RKIP's function to other signaling cascades, within the context of various physiological and pathophysiological systems. This review will summarize our current knowledge of the neurophysiological roles of RKIP in the mammalian brain, including its function in the circadian clock and synaptic plasticity. It will also discuss evidence for an involvement of RKIP and its derived neuropeptide, hippocampal cholinergic neurostimulating peptide (HCNP), in neural development and differentiation. Implications in certain pathologies such as Alzheimer's disease and brain cancer will be highlighted. By chronicling the diverse functions of RKIP in the brain, we hope that this review will serve as a timely resource that ignites future studies on this versatile, multifaceted protein in the nervous system.


Asunto(s)
Encéfalo/metabolismo , Mamíferos , Proteínas de Unión a Fosfatidiletanolamina/fisiología , Animales , Bovinos , Expresión Génica , Humanos , Mamíferos/fisiología , Proteínas de Unión a Fosfatidiletanolamina/química , Conformación Proteica , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA