Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2831: 179-197, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39134850

RESUMEN

Digital reconstruction of neuronal structures from 3D neuron microscopy images is critical for the quantitative investigation of brain circuits and functions. Currently, neuron reconstructions are mainly obtained by manual or semiautomatic methods. However, these ways are labor-intensive, especially when handling the huge volume of whole brain microscopy imaging data. Here, we present a deep-learning-based neuron morphology analysis toolbox (DNeuroMAT) for automated analysis of neuron microscopy images, which consists of three modules: neuron segmentation, neuron reconstruction, and neuron critical points detection.


Asunto(s)
Aprendizaje Profundo , Imagenología Tridimensional , Neuronas , Neuronas/citología , Imagenología Tridimensional/métodos , Programas Informáticos , Animales , Procesamiento de Imagen Asistido por Computador/métodos , Encéfalo/citología , Humanos
2.
IEEE Trans Med Imaging ; 43(7): 2574-2586, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38373129

RESUMEN

Accurate morphological reconstruction of neurons in whole brain images is critical for brain science research. However, due to the wide range of whole brain imaging, uneven staining, and optical system fluctuations, there are significant differences in image properties between different regions of the ultrascale brain image, such as dramatically varying voxel intensities and inhomogeneous distribution of background noise, posing an enormous challenge to neuron reconstruction from whole brain images. In this paper, we propose an adaptive dual-task learning network (ADTL-Net) to quickly and accurately extract neuronal structures from ultrascale brain images. Specifically, this framework includes an External Features Classifier (EFC) and a Parameter Adaptive Segmentation Decoder (PASD), which share the same Multi-Scale Feature Encoder (MSFE). MSFE introduces an attention module named Channel Space Fusion Module (CSFM) to extract structure and intensity distribution features of neurons at different scales for addressing the problem of anisotropy in 3D space. Then, EFC is designed to classify these feature maps based on external features, such as foreground intensity distributions and image smoothness, and select specific PASD parameters to decode them of different classes to obtain accurate segmentation results. PASD contains multiple sets of parameters trained by different representative complex signal-to-noise distribution image blocks to handle various images more robustly. Experimental results prove that compared with other advanced segmentation methods for neuron reconstruction, the proposed method achieves state-of-the-art results in the task of neuron reconstruction from ultrascale brain images, with an improvement of about 49% in speed and 12% in F1 score.


Asunto(s)
Algoritmos , Encéfalo , Neuronas , Encéfalo/diagnóstico por imagen , Humanos , Redes Neurales de la Computación , Animales , Procesamiento de Imagen Asistido por Computador/métodos , Neuroimagen/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA