Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Soft Robot ; 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38237109

RESUMEN

Previous research on wearable robotics focused on developing actuation mechanisms while overlooking influences of skin movement. During finger flexion, skins on the opisthenar and finger back are stretched. Impeding such skin movement will obstruct normal finger motions. In this research, a statistical study on skin movement is proposed and conducted to quantify skin movement on human hands. Results of 30 subjects (15 men and 15 women) reveal that skin at the finger back extends by an average of 29.3 ± 7.2% in fist clenching. Based on this study, design guidelines for robotic gloves are proposed, and nominal strain values at different hand regions are tabulated for references in robotic glove design. To explore the influence of skin movement on wearable robotics, an elastomer-constrained flat tube actuator is proposed based on which two prototype robotic gloves are developed: one with an ergonomic strap interface that has small constraint to skin motion, and the other based on the commonly used fabric glove that is supposed to have large constraint to skin motion. With the same power input to the robotic gloves, the strap-based design achieves a finger motion range of 2.5 times and a gripping force of 4.3 times that of the conventional fabric glove.

2.
Biomimetics (Basel) ; 8(8)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38132535

RESUMEN

Soft robots are compliant, impact resistant, and relatively safe in comparison to hard robots. However, the development of untethered soft robots is still a major challenge because soft legs cannot effectively support the power and control systems. Most untethered soft robots apply a crawling or walking gait, which limits their locomotion speed and mobility. This paper presents an untethered soft robot that can move with a bioinspired dynamic trotting gait. The robot is driven by inflatable soft legs designed on the basis of the pre-charged pneumatic (PCP) actuation principle. Experimental results demonstrate that the developed robot can trot stably with the fastest speed of 23 cm/s (0.97 body length per second) and can trot over different terrains (slope, step, rough terrain, and natural terrains). The robotic dog can hold up to a 5.5 kg load in the static state and can carry up to 1.5 kg in the trotting state. Without any rigid components inside the legs, the developed robotic dog exhibits resistance to large impacts, i.e., after withstanding a 73 kg adult (46 times its body mass), the robotic dog can stand up and continue its trotting gait. This innovative robotic system has great potential in equipment inspection, field exploration, and disaster rescue.

3.
Biomimetics (Basel) ; 8(2)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37218795

RESUMEN

The compliance of conventional granular jamming universal grippers is limited due to the increasing friction among particles when enveloping an object. This property limits the applications of such grippers. In this paper, we propose a fluidic-based approach for universal gripper which has a much higher compliance compared to conventional granular jamming universal grippers. The fluid is made of micro-particles suspended in liquid. Jamming transition of the dense granular suspension fluid from a fluid (hydrodynamic interactions) to solid-like state (frictional contacts) in the gripper is achieved by external pressure from the inflation of an airbag. The basic jamming mechanism and theoretical analysis of the proposed fluid is investigated, and a prototype universal gripper based on the fluid is developed. The proposed universal gripper exhibits advantageous compliance and grasping robustness in sample grasping of delicate objects, such as plants and sponge objects, where the traditional granular jamming universal gripper fails.

4.
Biomimetics (Basel) ; 7(4)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36278728

RESUMEN

When compressing a soft bellow, the bellow will contract and pump out the fluid inside the bellow. Utilizing this property, we propose a novel actuation method called compressing bellow actuation (CBA), which can output fluidic power and tendon-driven force simultaneously. Based on the CBA method, a double-acting soft actuator (DASA) combining fluidic elastomer actuator (FEA) and tendon-driven metacarpophalangeal (MCP) joint is proposed for robotic finger design. The proposed DASA exhibits both compliance and adaptiveness of FEAs, and controllability and large output force of the tendon-driven methods. The fluid in the bellow can be either air or water or even integration of the two, thus constituting three different actuation modes. Mathematical modeling of the relationship between bellow compression displacement and DASA's bending angle is developed. Furthermore, experimental characterizations of DASA's bending angle and blocking force are conducted at different actuation modes. The double-acting method can availably promote the bending angle of an FEA by up to 155%, and the blocking force by up to 132% when the FEA is water-filled. A soft robotic hand with a forearm prototype based on the DASA fingers is fabricated for the demonstration of finger motion and gripping applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA