Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biophys J ; 121(16): 3136-3145, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35808832

RESUMEN

Bacteriorhodopsin (BR) is a light-driven outward proton pump found mainly in halophilic archaea. A BR from an archaeon Haloquadratum walsbyi (HwBR) was found to pump protons under more acidic conditions compared with most known BR proteins. The atomic structural study on HwBR unveiled that a pair of hydrogen bonds between the BC and FG loop in its periplasmic region may be a factor in such improved pumping capability. Here, we further investigated the retinal-binding pocket of HwBR and found that Trp94 contributes to the higher acid tolerance. Through single mutations in a BR from Halobacterium salinarum and HwBR, we examined the conserved tryptophan residues in the retinal-binding pocket. Among these residues of HwBR, mutagenesis at Trp94 facing the periplasmic region caused the most significant disruption to optical stability and proton-pumping capability under acidic conditions. The other tryptophan residues of HwBR exerted little impact on both maximum absorption wavelength and pH-dependent proton pumping. Our findings suggest that the residues from Trp94 to the hydrogen bonds at the BC loop confer both optical stability and functionality on the overall protein in low-pH environments.


Asunto(s)
Bacteriorodopsinas , Halobacteriaceae , Bacteriorodopsinas/química , Halobacteriaceae/metabolismo , Halobacterium salinarum/química , Halobacterium salinarum/genética , Halobacterium salinarum/metabolismo , Concentración de Iones de Hidrógeno , Bombas de Protones/metabolismo , Protones , Triptófano/metabolismo
2.
Sci Rep ; 8(1): 14026, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30232361

RESUMEN

Microbial rhodopsins (M-Rho) are found in Archaea, Bacteria and some species of Eukarya and serve as light-driven ion pumps or mediate phototaxis responses in various biological systems. We previously reported an expression system using a highly expressible mutant, D94N-HmBRI (HEBR) from Haloarcula marismortui, as a leading tag to assist in the expression of membrane proteins that were otherwise difficult to express in E. coli. In this study, we show a universal strategy for the expression of two M-Rho proteins, either the same or different types, as one fusion protein with the HEBR system. One extra transmembrane domain was engineered to the C-terminal of HEBR to express another target M-Rho. The average expression yield in this new system reached a minimum of 2 mg/L culture, and the maximum absorbance of the target M-Rho remained unaltered in the fusion forms. The fusion protein showed a combined absorbance spectrum of a lone HEBR and target M-Rho. The function of the target M-Rho was not affected after examination with functional tests, including the photocycle and proton pumping activity of fusion proteins. In addition, an otherwise unstable sensory rhodopsin, HmSRM, showed the same or even improved stability under various temperatures, salt concentrations, and a wide range of pH conditions. This HEBR platform provides the possibility to construct multi-functional, stoichiometric and color-tuning fusion proteins using M-Rho from haloarchaea.


Asunto(s)
Bacteriorodopsinas/genética , Haloarcula marismortui/metabolismo , Rodopsinas Microbianas/genética , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Bacteriorodopsinas/metabolismo , Escherichia coli/metabolismo , Ingeniería Genética , Haloarcula marismortui/genética , Concentración de Iones de Hidrógeno , Proteínas Recombinantes de Fusión/metabolismo , Rodopsinas Microbianas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA