Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 67(17): 15131-15147, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39221504

RESUMEN

A series of arylsulfones and heteroarylsulfones have previously been demonstrated to dysregulate the conserved bacterial ClpP protease, causing the unspecific degradation of essential cellular housekeeping proteins and ultimately resulting in cell death. A cocrystal structure of a 2-ß-sulfonylamide analog, ACP1-06, with Escherichia coli ClpP showed that its 2-pyridyl sulfonyl substituent adopts two orientations in the binding site related through a sulfone bond rotation. From this, a new bis-aryl phosphine oxide scaffold, designated as ACP6, was designed based on a "conformation merging" approach of the dual orientation of the ACP1-06 sulfone. One analog, ACP6-12, exhibited over a 10-fold increase in activity over the parent ACP1-06 compound, and a cocrystal X-ray structure with ClpP confirmed its predicted binding conformation. This allowed for a comparative analysis of how different ligand classes bind to the hydrophobic binding site. The study highlights the successful application of structure-based rational design of novel phosphine oxide-based antibiotics.


Asunto(s)
Antibacterianos , Diseño de Fármacos , Endopeptidasa Clp , Escherichia coli , Óxidos , Fosfinas , Fosfinas/química , Fosfinas/farmacología , Endopeptidasa Clp/metabolismo , Endopeptidasa Clp/antagonistas & inhibidores , Endopeptidasa Clp/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Óxidos/química , Escherichia coli/enzimología , Escherichia coli/efectos de los fármacos , Relación Estructura-Actividad , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/antagonistas & inhibidores , Cristalografía por Rayos X , Modelos Moleculares , Sitios de Unión , Estructura Molecular
2.
ACS Infect Dis ; 6(12): 3224-3236, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33237740

RESUMEN

Evolving antimicrobial resistance has motivated the search for novel targets and alternative therapies. Caseinolytic protease (ClpP) has emerged as an enticing new target since its function is conserved and essential for bacterial fitness, and because its inhibition or dysregulation leads to bacterial cell death. ClpP protease function controls global protein homeostasis and is, therefore, crucial for the maintenance of the bacterial proteome during growth and infection. Previously, acyldepsipeptides (ADEPs) were discovered to dysregulate ClpP, leading to bactericidal activity against both actively growing and dormant Gram-positive pathogens. Unfortunately, these compounds had very low efficacy against Gram-negative bacteria. Hence, we sought to develop non-ADEP ClpP-targeting compounds with activity against Gram-negative species and called these activators of self-compartmentalizing proteases (ACPs). These ACPs bind and dysregulate ClpP in a manner similar to ADEPs, effectively digesting bacteria from the inside out. Here, we performed further ACP derivatization and testing to improve the efficacy and breadth of coverage of selected ACPs against Gram-negative bacteria. We observed that a diverse collection of Neisseria meningitidis and Neisseria gonorrhoeae clinical isolates were exquisitely sensitive to these ACP analogues. Furthermore, based on the ACP-ClpP cocrystal structure solved here, we demonstrate that ACPs could be designed to be species specific. This validates the feasibility of drug-based targeting of ClpP in Gram-negative bacteria.


Asunto(s)
Antibacterianos , Depsipéptidos , Péptido Hidrolasas , Antibacterianos/farmacología , Bacterias , Depsipéptidos/farmacología , Bacterias Gramnegativas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA