Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Foods ; 10(12)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34945462

RESUMEN

This research aimed to study the chemical composition of Aloysia citrodora methanolic extract and its biological activities as an antioxidant, and its antibacterial, antifungal and anti-inflammatory activities based on four bioclimatic collection stages. The contents of total phenols, total flavonoids and total tannins were determined. Nine phenolic compounds were identified by LC-DAD-ESI-MS/MS. The major compound was acteoside, a phenylpropanoid which represented about 80% of the methanolic fraction in the various regions. The antioxidant activities of different locations were measured by different analytical assays, such as DPPH, ABTS and iron reducing power. The results showed that phenolic compounds and antioxidant activities varied with climatic and environmental factors. Moreover, there was a significant dependency between regions and biological activities. The use of a principal component analysis showed that there was a close relationship among phenylpropanoids, phenolic compounds and the studied biological activities.

2.
Biochem Genet ; 56(1-2): 78-92, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29150723

RESUMEN

Grapevine is an important fruit crop cultivated worldwide. Previously, we have reported the characterization of a salt stress-inducible gene Vv-α-gal/SIP isolated from the tolerant grapevine cultivar Razegui. In this study, we performed functional studies in both Escherichia coli and tobacco systems to gain more insights in the role of the Vv-α-gal/SIP gene. Our data revealed that the recombinant E. coli cells harboring the pET24b+ expression vector with the Vv-α-gal/SIP showed higher tolerance to desiccation and salinity compared to E. coli cells harboring the vector alone. In addition, the transgenic tobacco plants expressing the Vv-α-gal/SIP gene exhibited a higher percentage of seed germination and better growth under salt stress than the wild-type (WT) tobacco seedlings. This stress mitigation might be related to the putative function of this gene, which is thought to be involved in carbohydrate metabolism regulation. Collectively, these results suggest that Vv-α-gal/SIP is potentially a candidate gene for engineering drought and salt tolerance in cultivated plants.


Asunto(s)
Escherichia coli , Germinación , Nicotiana , Proteínas de Plantas , Plantas Modificadas Genéticamente , Tolerancia a la Sal , Vitis/genética , alfa-Galactosidasa , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Nicotiana/enzimología , Nicotiana/genética , Vitis/enzimología , alfa-Galactosidasa/biosíntesis , alfa-Galactosidasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA