Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Appl Microb Res, v. 1, n. 1, p. 55-65, 2018
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2604

RESUMEN

Crotoxin (CTX), the predominant toxin in Crotalus durissus terrificus snake venom (CdtV), has anti-inflammatory and immunomodulatory effects. Despite its inhibitory action on neutrophil migration and phagocytosis, CTX does not directly affect the production of reactive oxygen species (ROS) by the neutrophils. In contrast, it enhances the generation of reactive oxygen and nitrogen intermediates by macrophages. Given the importance of macrophage-neutrophil interactions in innate antimicrobial defense, the aim of this study was to investigate the effect of CTX on neutrophil ROS production and killing activity, either through CTX-treated macrophage co-culture or conditioned medium of CTX-treated macrophages. The results showed an important modulatory action of CTX on the neutrophil function as well as neutrophil-macrophage interactions, as demonstrated by the increased production of hydrogen peroxide, hypochlorous acid, nitric oxide and TNF- a , along with the increased fungicidal activity of neutrophils.

2.
J. Appl. Microb. Res. ; 1(1): p. 55-65, 2018.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15677

RESUMEN

Crotoxin (CTX), the predominant toxin in Crotalus durissus terrificus snake venom (CdtV), has anti-inflammatory and immunomodulatory effects. Despite its inhibitory action on neutrophil migration and phagocytosis, CTX does not directly affect the production of reactive oxygen species (ROS) by the neutrophils. In contrast, it enhances the generation of reactive oxygen and nitrogen intermediates by macrophages. Given the importance of macrophage-neutrophil interactions in innate antimicrobial defense, the aim of this study was to investigate the effect of CTX on neutrophil ROS production and killing activity, either through CTX-treated macrophage co-culture or conditioned medium of CTX-treated macrophages. The results showed an important modulatory action of CTX on the neutrophil function as well as neutrophil-macrophage interactions, as demonstrated by the increased production of hydrogen peroxide, hypochlorous acid, nitric oxide and TNF- a , along with the increased fungicidal activity of neutrophils.

3.
Toxicon ; 136: 44-55, 2017.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17780

RESUMEN

Neutrophils have a critical role in the innate immune response; these cells represent the primary line of defense against invading pathogens or tissue injury. Crotoxin (CTX), the major toxin of the South American rattlesnake (Crotalus durissus terrificus) venom, presents longstanding anti-inflammatory properties, inhibiting neutrophil migration and phagocytosis by peritoneal neutrophils for 14 days. Herein, to elucidate these sustained inhibitory effects induced by CTX, we performed in vitro and in vivo studies evaluating the functionality of bone marrow neutrophils and possible molecular mechanisms associated with these effects. CTX inhibited the processes of chemotaxis, adhesion to fibronectin, and phagocytosis of opsonized particles; however, it did not affect ROS production or degranulation in bone marrow neutrophils. To understand the molecular mechanisms that orchestrate this effect, we investigated the expression of CR3 on the neutrophil surface and the total expression and activity of signaling proteins from the Syk-GTPase pathway, which is involved in actin polymerization. CTX down-regulated both subunits of CR3, as well as, the activity of Syk, Vav1, Cdc42, Rac1 and RhoA, and the expression of the subunit 1B from Arp2/3. Together, our findings demonstrated that CTX inhibits the functionally of bone marrow neutrophils and that this effect may be associated with an impairment of the Syk-GTPase pathway. This study demonstrates, for the first time, that the sustained down-modulatory effect of CTX on circulating and peritoneal neutrophils is associated with functional modifications of neutrophils still in the bone marrow, and it also contributes to a better understanding of the anti-inflammatory effect of CTX.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA