RESUMEN
BACKGROUND: The parasite Giardia duodenalis infects a wide range of vertebrate hosts, including domestic and wild animals as well as humans. Giardia is genotyped into eight assemblages (A-H). Zoonotic assemblages A and B have already been identified in humans and wild and domestic animals (non-human primates and cats) from Brazilian Amazon and in the world. Due to its zoonotic/zooanthroponotic nature, surveillance initiatives and the definition of Giardia assemblages are important in order to characterise the epidemiological scenario and to implement further control measures. OBJECTIVES: Determine assemblages of G. duodenalis in sloths from the Brazilian Amazon Region. METHODS: Faecal parasitological examination of sloths from Amazonas State. Polymerase chain reaction (PCR) targeting the beta giardin (BG), and genes from multilocus sequence typing (MLST) scheme, amplicon sequencing and phylogenetic analysis. FINDINGS: Here, we identified, by microscopy, Giardia in two northern sloths (Bradypus tridactylus). These two samples were submitted to molecular assays and it was revealed that both were infected by G. duodenalis assemblage A. Phylogenetic analysis showed that they belong to assemblage A within sequences from humans and wild and domestic animals. CONCLUSION: Therefore, besides showing, by the first time, the current presence of this parasite in sloths, our findings reveals that this wild animal species would be part of the zoonotic/zooanthroponotic scenario of this parasite in the Brazilian Amazon.
Asunto(s)
Giardia lamblia , Giardiasis , Perezosos , Animales , Humanos , Gatos , Giardia lamblia/genética , Perezosos/genética , Tipificación de Secuencias Multilocus , Filogenia , Brasil/epidemiología , Heces/parasitología , Giardiasis/epidemiología , Giardiasis/veterinaria , Giardiasis/diagnóstico , Zoonosis , Giardia/genética , Genotipo , Animales Domésticos , Animales Salvajes , PrevalenciaRESUMEN
BACKGROUND The parasite Giardia duodenalis infects a wide range of vertebrate hosts, including domestic and wild animals as well as humans. Giardia is genotyped into eight assemblages (A-H). Zoonotic assemblages A and B have already been identified in humans and wild and domestic animals (non-human primates and cats) from Brazilian Amazon and in the world. Due to its zoonotic/zooanthroponotic nature, surveillance initiatives and the definition of Giardia assemblages are important in order to characterise the epidemiological scenario and to implement further control measures. OBJECTIVES Determine assemblages of G. duodenalis in sloths from the Brazilian Amazon Region. METHODS Faecal parasitological examination of sloths from Amazonas State. Polymerase chain reaction (PCR) targeting the beta giardin (BG), and genes from multilocus sequence typing (MLST) scheme, amplicon sequencing and phylogenetic analysis. FINDINGS Here, we identified, by microscopy, Giardia in two northern sloths (Bradypus tridactylus). These two samples were submitted to molecular assays and it was revealed that both were infected by G. duodenalis assemblage A. Phylogenetic analysis showed that they belong to assemblage A within sequences from humans and wild and domestic animals. CONCLUSION Therefore, besides showing, by the first time, the current presence of this parasite in sloths, our findings reveals that this wild animal species would be part of the zoonotic/zooanthroponotic scenario of this parasite in the Brazilian Amazon.
RESUMEN
BACKGROUND: Giardia duodenalis is a protozoan parasite that infects humans and other mammals and causes giardiasis worldwide. Giardia is genotyped into eight assemblages (A-H), with assemblages A and B considered zoonotic. OBJECTIVES: The aim of this study was to determine the assemblages of G. duodenalis from individuals living in rural and urban areas of the Amazonas State. METHODS: 103 human faecal specimens microscopically positive for the presence of Giardia obtained from four municipalities in Amazonas and four animal faecal specimens were genotyped based on the sequences of two genes, triosephosphate isomerase (TPI) and ß-giardin (BG). FINDINGS: In humans, assemblage A was the most represented with the identification of sub-assemblages AI, AII and AIII based on BG and sub-assemblages AI and AII based on TPI. Similarly, there is a diversity of sub-assemblage B considering BG (B and BIII) and TPI (B, BIII and BIV). In addition, we characterised homogeneous and heterogeneous genotypes comprising assemblages/sub-assemblages A and B in individuals from urban and rural areas. Here, for the first time, it was genotyped Giardia that infects animals from the Brazilian Amazon region. We identified sub-assemblage AI in one Ateles paniscus and two Felis catus and sub-assemblage BIV in one Lagothrix cana. MAIN CONCLUSIONS: Therefore, humans and animals from the urban and rural Amazon share Giardia genotypes belonging to assemblages A and B, which are found in cosmopolitan regions around the world.
Asunto(s)
Giardia lamblia , Giardiasis , Animales , Brasil , Gatos , Heces/parasitología , Genotipo , Giardia/genética , Giardia lamblia/genética , Giardiasis/parasitología , Humanos , Filogenia , Triosa-Fosfato IsomerasaRESUMEN
Background: The Choloepus didactylus is characterized by having 2 fingers on the forelimbs and 3 on the hind limbs, being found more frequently in northern South America, in countries such as Venezuela, Guyana, Ecuador, Peru, and Brazil. In Brazil, deforestation of the Amazon rainforest has threatened the survival of C. didactylus. In addition, these animals can be affected by several diseases, being those of the musculoskeletal system with limited reports. Thus, the present report aimed to describe the treatment and evolution of an open fracture of the femur in a free-living Choloepus didactylus, which after rehabilitation was released back to the wild. Case: A free-living female two-toed sloth (Choloepus didactylus), weighing 7.0 kg, was found in Manaus city and referred to the Wild Animal Treatment Center (CETAS - IBAMA-AM) located in Amazonas, Brazil, after initial treatment and osteosynthesis in a private clinic (CVMinasPet). According to history, the animal had suffered electrocution 30 days ago and, as a result, had an extensive wound that resulted in the exposure of the knee joint, distal fracture of the femur, and areas of necrosis in the right pelvic limb. After cleansing of the area and removal of necrotic tissues, the fracture was stabilized with the cross-pinning technique (2 Steinmann pins). Then, the stifle joint was stabilized with external skeletal fixation (Type 1b, unilateral biplanar). The external fixator and cross-pins were removed 2 months after the surgical procedure, being observed bone healing. Next, the animal underwent physical rehabilitation for 30 days. After the rehabilitation period, a microchip and a radio collar were applied, and the sloth was released back to the wild. Discussion: Electrocution has been one of the causes of wildlife rescue, with consequences varying depending on the degree of the burn. Generally, the burn is most severe at the entry and exit sites. Since suspensory quadrupedal locomotion requires that sloths have specialized hands and feet to connect with the supports, probably the animal of the current report touched the right pelvic limb on a high-tension pole. The cross-pinning technique combined with the external fixator was used because the animal had an exposed Salter-Harris type I fracture with soft tissue loss. The younger the animal presents physeal fractures, the greater is the chance of developing growth abnormalities due to growth plate closure caused by fracture type or immobilization method. Since the sloth was a free-living animal, the age was unknown. However, pelvic limb length discrepancy was not observed after removing the implants. Culture and antimicrobial susceptibility test were not done and may be considered a limitation of this report. However, the application of ceftriaxone was adequate to control the infection, since the animal did not show signs of infection or draining sinus tracts. Ceftriaxone is a third-generation antibiotic that can be used in chronic osteomyelitis. In addition, the animal in the present report showed good adaptation to captive conditions that contributed to the clinical management. The longevity of the sloth in captivity can reach more than 30 years, but the goal is always to return the animal to nature after the treatment. Surgical treatment of the fracture and physical therapy after implant removal allowed this action in the current report, confirmed by monitoring with the radio collar.
Asunto(s)
Animales , Femenino , Perezosos/lesiones , Fracturas Abiertas/cirugía , Fracturas Abiertas/terapia , Quemaduras por Electricidad/veterinaria , Técnicas de Ejercicio con Movimientos/veterinariaRESUMEN
BACKGROUND Giardia duodenalis is a protozoan parasite that infects humans and other mammals and causes giardiasis worldwide. Giardia is genotyped into eight assemblages (A-H), with assemblages A and B considered zoonotic. OBJECTIVES The aim of this study was to determine the assemblages of G. duodenalis from individuals living in rural and urban areas of the Amazonas State. METHODS 103 human faecal specimens microscopically positive for the presence of Giardia obtained from four municipalities in Amazonas and four animal faecal specimens were genotyped based on the sequences of two genes, triosephosphate isomerase (TPI) and β-giardin (BG). FINDINGS In humans, assemblage A was the most represented with the identification of sub-assemblages AI, AII and AIII based on BG and sub-assemblages AI and AII based on TPI. Similarly, there is a diversity of sub-assemblage B considering BG (B and BIII) and TPI (B, BIII and BIV). In addition, we characterised homogeneous and heterogeneous genotypes comprising assemblages/sub-assemblages A and B in individuals from urban and rural areas. Here, for the first time, it was genotyped Giardia that infects animals from the Brazilian Amazon region. We identified sub-assemblage AI in one Ateles paniscus and two Felis catus and sub-assemblage BIV in one Lagothrix cana. MAIN CONCLUSIONS Therefore, humans and animals from the urban and rural Amazon share Giardia genotypes belonging to assemblages A and B, which are found in cosmopolitan regions around the world.