RESUMEN
In a systematic field survey for plant-infecting viruses, leaf tissues were collected from trees showing virus-like symptoms in Brazil. After viral enrichment, total RNA was extracted and sequenced using the MiSeq platform (Illumina). Two nearly full-length picorna-like genomes of 9534 and 8158 nucleotides were found associated with Hovenia dulcis (Rhamnaceae family). Based upon their genomic information, specific primers were synthetized and used in RT-PCR assays to identify plants hosting the viral sequences. The larger contig was tentatively named as Hovenia dulcis-associated virus 1 (HDaV1), and it exhibited low nucleotide and amino acid identities with Picornavirales species. The smaller contig was related to insect-associated members of the Dicistroviridae family but exhibited a distinct genome organization with three non-overlapping open reading frames (ORFs), and it was tentatively named as Hovenia dulcis-associated virus 2 (HDaV2). Phylogenetic analysis using the amino acid sequence of RNA-dependent RNA polymerase (RdRp) revealed that HDaV1 and HDaV2 clustered in distinct groups, and both viruses were tentatively assigned as new members of the order Picornavirales. HDaV2 was assigned as a novel species in the Dicistroviridae family. The 5' ends of both viruses are incomplete. In addition, a nucleotide composition analysis (NCA) revealed that HDaV1 and HDaV2 have similarities with invertebrate-infecting viruses, suggesting that the primary host(s) of these novel virus species remains to be discovered.
Asunto(s)
Dicistroviridae/genética , Picornaviridae/genética , Brasil , Dicistroviridae/clasificación , Dicistroviridae/aislamiento & purificación , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Picornaviridae/clasificación , Picornaviridae/aislamiento & purificación , Enfermedades de las Plantas/virología , Rhamnaceae/virología , Proteínas Virales/genéticaRESUMEN
Here, we describe the complete genome sequence of melon yellowing-associated virus (MYaV), found in melon plants with severe yellowing disease, determined by high-throughput and Sanger sequencing. MYaV has an RNA genome of 9073 nucleotides plus a poly(A) tail. At least six open reading frames were predicted, with a typical carlavirus genomic organisation. Phylogenetic analysis of the complete genome sequence and the amino acid sequences of the RNA-dependent RNA polymerase confirmed that MYaV belongs to the genus Carlavirus, with the highest genome-wide nucleotide sequence identity of 59.8% to sweet potato yellow mottle virus.
Asunto(s)
Carlavirus/clasificación , Carlavirus/aislamiento & purificación , Cucurbitaceae/virología , Genoma Viral , Enfermedades de las Plantas/virología , Análisis de Secuencia de ADN , Brasil , Carlavirus/genética , Sistemas de Lectura Abierta , Filogenia , ARN Viral/genética , Virus Satélites , Homología de SecuenciaRESUMEN
The tospoviruses groundnut ringspot virus (GRSV) and zucchini lethal chlorosis virus (ZLCV) cause severe losses in many crops, especially in solanaceous and cucurbit species. In this study, the non-structural NSs gene and the 5'UTRs of these two biologically distinct tospoviruses were cloned and sequenced. The NSs sequence of GRSV and ZLCV were both 1,404 nucleotides long. Pairwise comparison showed that the NSs amino acid sequence of GRSV shared 69.6% identity with that of ZLCV and 75.9% identity with that of TSWV, while the NSs sequence of ZLCV and TSWV shared 67.9% identity. Phylogenetic analysis based on NSs sequences confirmed that these viruses cluster in the American clade.