Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mem Inst Oswaldo Cruz ; 116: e210209, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35019070

RESUMEN

BACKGROUND: Leishmaniasis is a neglected tropical disease caused by the parasite Leishmania braziliensis, commonly found in Brazil and associated with cutaneous and visceral forms of this disease. Like other organisms, L. braziliensis has an enzyme called glutamine synthetase (LbGS) that acts on the synthesis of glutamine from glutamate. This enzyme plays an essential role in the metabolism of these parasites and can be a potential therapeutic target for treating this disease. OBJECTIVES: Investigate LbGS structure and generate structural models of the protein. METHODS: We use the method of crosslinking mass spectrometry (XLMS) and generate structural models in silico using I-TASSER. FINDINGS: 42 XLs peptides were identified, of which 37 are explained in a monomeric model with the other five indicating LbGS dimerization and pentamers interaction region. The comparison of 3D models generated in the presence and absence of XLMS restrictions probed the benefits of modeling with XLMS highlighting the inappropriate folding due to the absence of spatial restrictions. MAIN CONCLUSIONS: In conclusion, we disclose the conservation of the active site and interface regions, but also unique features of LbGS showing the potential of XLMS to probe structural information and explore new drugs.


Asunto(s)
Glutamato-Amoníaco Ligasa/química , Leishmania braziliensis , Proteínas Protozoarias/química , Leishmania braziliensis/enzimología , Espectrometría de Masas , Piel
2.
Protein Expr Purif ; 191: 106007, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34728367

RESUMEN

Metacaspases are known to have a fundamental role in apoptosis-like, a programmed cellular death (PCD) in plants, fungi, and protozoans. The last includes several parasites that cause diseases of great interest to public health, mostly without adequate treatment and included in the neglected tropical diseases category. One of them is Trypanosoma cruzi which causes Chagas disease and has two metacaspases involved in its PCD: TcMCA3 and TcMCA5. Their roles seemed different in PCD, TcMCA5 appears as a proapoptotic protein negatively regulated by its C-terminal sequence, while TcMCA3 is described as a cell cycle regulator. Despite this, the precise role of TcMCA3 and TcMCA5 and their atomic structures remain elusive. Therefore, developing methodologies to allow investigations of those metacaspases is relevant. Herein, we produced full-length and truncated versions of TcMCA5 and applied different strategies for their folded recombinant production from E. coli inclusion bodies. Biophysical assays probed the efficacy of the production method in providing a high yield of folded recombinant TcMCA5. Moreover, we modeled the TcMCA5 protein structure using experimental restraints obtained by XLMS. The experimental design for novel methods and the final protocol provided here can guide studies with other metacaspases. The production of TcMCA5 allows further investigations as protein crystallography, HTS drug discovery to create potential therapeutic in the treatment of Chagas' disease and in the way to clarify how the PCD works in the parasite.


Asunto(s)
Caspasas/química , Replegamiento Proteico , Proteínas Protozoarias/química , Trypanosoma cruzi/enzimología , Caspasas/genética , Dominios Proteicos , Proteínas Protozoarias/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Trypanosoma cruzi/genética
3.
Mem. Inst. Oswaldo Cruz ; 116: e210209, 2021. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1356487

RESUMEN

BACKGROUND Leishmaniasis is a neglected tropical disease caused by the parasite Leishmania braziliensis, commonly found in Brazil and associated with cutaneous and visceral forms of this disease. Like other organisms, L. braziliensis has an enzyme called glutamine synthetase (LbGS) that acts on the synthesis of glutamine from glutamate. This enzyme plays an essential role in the metabolism of these parasites and can be a potential therapeutic target for treating this disease. OBJECTIVES Investigate LbGS structure and generate structural models of the protein. METHODS We use the method of crosslinking mass spectrometry (XLMS) and generate structural models in silico using I-TASSER. FINDINGS 42 XLs peptides were identified, of which 37 are explained in a monomeric model with the other five indicating LbGS dimerization and pentamers interaction region. The comparison of 3D models generated in the presence and absence of XLMS restrictions probed the benefits of modeling with XLMS highlighting the inappropriate folding due to the absence of spatial restrictions. MAIN CONCLUSIONS In conclusion, we disclose the conservation of the active site and interface regions, but also unique features of LbGS showing the potential of XLMS to probe structural information and explore new drugs.

4.
Heliyon ; 6(5): e03996, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32462094

RESUMEN

The wide use of pesticides in agriculture expose microbiota to stressful conditions that require the development of survival strategies. The bacterial response to many pollutants has not been elucidated in detail, as well as the evolutionary processes that occur to build adapted communities. The purpose of this study was to evaluate the bacterial population structure and adaptation strategies in planktonic and biofilm communities in limited environments, as tanks containing water used for washing herbicide containers. This biodiversity, with high percentage of nonculturable microorganisms, was characterized based on habitat and abiotic parameters using molecular and bioinformatics tools. According to water and wastewater standards, the physicochemical conditions of the tank water were inadequate for survival of the identified bacteria, which had to develop survival strategies in this hostile environment. The biodiversity decreased in the transition from planktonic to biofilm samples, indicating a possible association between genetic drift and selection of individuals that survive under stressful conditions, such as heating in water and the presence of chlorine, fluorine and agrochemicals over a six-month period. The abundance of Enterobacter, Acinetobacter and Pseudomonas in biofilms from water tanks was linked to essential processes, deduced from the genes attributed to these taxonomic units, and related to biofilm formation, structure and membrane transport, quorum sensing and xenobiotic degradation. These characteristics were randomly combined and fixed in the biofilm community. Thus, communities of biofilm bacteria obtained under these environmental conditions serve as interesting models for studying herbicide biodegradation kinetics and the prospects of consortia suitable for use in bioremediation in reservoirs containing herbicide-contaminated wastewater, as biofilters containing biofilm communities capable of degrading herbicides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA