Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(29): 38365-38376, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38981059

RESUMEN

Stretchable electronics has received major attention in recent years due to the prospects of integrating electronics onto and into the human body. While many studies investigate how different conductive fillers perform in stretchable composites, the effect of different elastomers on composite performance, and the related fundamental understanding of what is causing the performance differences, is poorly understood. Here, we perform a systematic investigation of the elastomer influence on the electromechanical performance of gold nanowire-based stretchable conductors based on five chemically different elastomers of similar Young's modulus. The choice of elastomer has a huge impact on the electromechanical performance of the conductors under cyclic strain, as some composites perform well, while others fail rapidly at 100% strain cycling. The lack of macroscopic crack formation in the failing composites indicates that the key aspect for good electromechanical performance is not homogeneous films on the macroscale but rather beneficial interactions on the nanoscale. Based on the comprehensive characterization, we propose a failure mechanism related to the mechanical properties of the elastomers. By improving our understanding of elastomer influence on the mechanisms of electrical failure, we can move toward rational material design, which could greatly benefit the field of stretchable electronics.

2.
Small ; : e2402214, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38944890

RESUMEN

Soft and stretchable nanocomposites can match the mechanical properties of neural tissue, thereby minimizing foreign body reactions to provide optimal stimulation and recording specificity. Soft materials for neural interfaces should simultaneously fulfill a wide range of requirements, including low Young's modulus (<<1 MPa), stretchability (≥30%), high conductivity (>> 1000 S cm-1), biocompatibility, and chronic stability (>> 1 year). Current nanocomposites do not fulfill the above requirements, in particular not the combination of softness and high conductivity. Here, this challenge is addressed by developing a scalable and robust synthesis route based on polymeric reducing agents for smooth, high-aspect ratio gold nanowires (AuNWs) of controllable dimensions with excellent biocompatibility. AuNW-silicone composites show outstanding performance with nerve-like softness (250 kPa), high conductivity (16 000 S cm-1), and reversible stretchability. Soft multielectrode cuffs based on the composite achieve selective functional stimulation, recordings of sensory stimuli in rat sciatic nerves, and show an accelerated lifetime stability of >3 years. The scalable synthesis method provides a chemically stable alternative to the widely used AgNWs, thereby enabling new applications within electronics, biomedical devices, and electrochemistry.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38141020

RESUMEN

We demonstrate an organic electrochemical transistor (OECT) biosensor for the detection of interleukin 6 (IL6), an important biomarker associated with various pathological processes, including chronic inflammation, inflammaging, cancer, and severe COVID-19 infection. The biosensor is functionalized with oligonucleotide aptamers engineered to bind specifically IL6. We developed an easy functionalization strategy based on gold nanoparticles deposited onto a poly(3,4-ethylenedioxythiophene) doped with polystyrenesulfonate (PEDOT:PSS) gate electrode for the subsequent electrodeposition of thiolated aptamers. During this functionalization step, the reduction of sulfide bonds allows for simultaneous deposition of a blocking agent. A detection range from picomolar to nanomolar concentrations for IL6 was achieved, and the selectivity of the device was assessed against Tumor Necrosis Factor (TNF), another cytokine involved in the inflammatory processes.

4.
J Neural Eng ; 18(4)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-33957608

RESUMEN

Objective. Electrical stimulation of the peripheral nervous system (PNS) can treat various diseases and disorders, including the healing process after nerve injury. A major challenge when designing electrodes for PNS stimulation is the mechanical mismatch between the nerve and the device, which can lead to non-conformal contact, tissue damage and inefficient stimulation due to current leakage. Soft and stretchable cuff electrodes promise to tackle these challenges but often have limited performance and rely on unconventional materials. The aim of this study is to develop a high performance soft and stretchable cuff electrode based on inert materials for low-voltage nerve stimulation.Approach. We developed 50µm thick stretchable cuff electrodes based on silicone rubber, gold nanowire conductors and platinum coated nanowire electrodes. The electrode performance was characterized under strain cycling to assess the durability of the electrodes. The stimulation capability of the cuff electrodes was evaluated in anin vivosciatic nerve rat model by measuring the electromyography response to various stimulation pulses.Main results. The stretchable cuff electrodes showed excellent stability for 50% strain cycling and one million stimulation pulses. Saturated homogeneous stimulation of the sciatic nerve was achieved at only 200 mV due to the excellent conformability of the electrodes, the low conductor resistance (0.3 Ohm sq-1), and the low electrode impedance.Significance. The developed stretchable cuff electrode combines favourable mechanical properties and good electrode performance with inert and stable materials, making it ideal for low power supply applications within bioelectronic medicine.


Asunto(s)
Nanocables , Animales , Estimulación Eléctrica , Electrodos , Oro , Ratas , Nervio Ciático
5.
Adv Healthc Mater ; 10(3): e2001397, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33205564

RESUMEN

Research on the field of implantable electronic devices that can be directly applied in the body with various functionalities is increasingly intensifying due to its great potential for various therapeutic applications. While conventional implantable electronics generally include rigid and hard conductive materials, their surrounding biological objects are soft and dynamic. The mechanical mismatch between implanted devices and biological environments induces damages in the body especially for long-term applications. Stretchable electronics with outstanding mechanical compliance with biological objects effectively improve such limitations of existing rigid implantable electronics. In this article, the recent progress of implantable soft electronics based on various conductive nanocomposites is systematically described. In particular, representative fabrication approaches of conductive and stretchable nanocomposites for implantable soft electronics and various in vivo applications of implantable soft electronics are focused on. To conclude, challenges and perspectives of current implantable soft electronics that should be considered for further advances are discussed.


Asunto(s)
Nanocompuestos , Dispositivos Electrónicos Vestibles , Conductividad Eléctrica , Electrónica , Prótesis e Implantes
6.
Nat Commun ; 11(1): 1424, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32188853

RESUMEN

The rapid growth of wearables has created a demand for lightweight, elastic and conformal energy harvesting and storage devices. The conducting polymer poly(3,4-ethylenedioxythiophene) has shown great promise for thermoelectric generators, however, the thick layers of pristine poly(3,4-ethylenedioxythiophene) required for effective energy harvesting are too hard and brittle for seamless integration into wearables. Poly(3,4-ethylenedioxythiophene)-elastomer composites have been developed to improve its mechanical properties, although so far without simultaneously achieving softness, high electrical conductivity, and stretchability. Here we report an aqueously processed poly(3,4-ethylenedioxythiophene)-polyurethane-ionic liquid composite, which combines high conductivity (>140 S cm-1) with superior stretchability (>600%), elasticity, and low Young's modulus (<7 MPa). The outstanding performance of this organic nanocomposite is the result of favorable percolation networks on the nano- and micro-scale and the plasticizing effect of the ionic liquid. The elastic thermoelectric material is implemented in the first reported intrinsically stretchable organic thermoelectric module.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA