Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 57(4): 2308-2313, 2018 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-29412646

RESUMEN

The first example of ionic ß-diketonates in which both the cation and anion are octahedral coordinatively saturated metal diketonate moieties are reported. Heterometallic tin-transition-metal heteroleptic diketonates were obtained through solid-state redox reactions and are formulated as {[SnIV(thd)3]+[MII(hfac)3]-} (MII = Mn (1), Fe (2), Co (3); thd = 2,2,6,6-tetramethyl-3,5-heptanedionate, hfac = hexafluoroacetylacetonate). X-ray single-crystal structural investigations along with DART mass spectrometry, multinuclear NMR, and magnetic susceptibility measurements have been used to confirm an assignment of metal oxidation states in compounds 1-3. Ionic compounds were found to melt congruently at temperatures below the decomposition point. As such, they represent prospective materials that can be utilized as ionic liquids as well as reagents for the soft transfer of diketonate ligands. An unexpected volatility of ionic compounds 1-3 was proposed to occur through a transport reaction, in which the transport agent is one of the products of their partial decomposition in the gas or condensed phase.

2.
Inorg Chem ; 56(16): 9574-9584, 2017 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-28758752

RESUMEN

A series of mixed-valent, heterometallic (mixed-transition metal) diketonates that can be utilized as prospective volatile single-source precursors for the low-temperature preparation of MxM'3-xO4 spinel oxide materials is reported. Three iron-cobalt complexes with Fe/Co ratios of 1:1, 1:2, and 2:1 were synthesized by several methods using both solid-state and solution reactions. On the basis of nearly quantitative reaction yields, elemental analyses, and comparison of metal-oxygen bonds with those in homometallic analogues, heterometallic compounds were formulated as [FeIII(acac)3][CoII(hfac)2] (1), [CoII(hfac)2][FeIII(acac)3][CoII(hfac)2] (2), and [FeII(hfac)2][FeIII(acac)3][CoII(hfac)2] (3). In the above heteroleptic complexes, the Lewis acidic, coordinatively unsaturated CoII/FeII centers chelated by two hexafluoroacetylacetonate (hfac) ligands maintain bridging interactions with oxygen atoms of acetylacetonate (acac) groups that chelate the neighboring FeIII metal ion. Preliminary assignment of Fe and Co positions/oxidation states in 1-3 drawn from X-ray structural investigation was corroborated by a number of complementary techniques. Single-crystal resonant synchrotron diffraction and neutron diffraction experiments unambiguously confirmed the location of Fe and Co sites in the molecules of dinuclear (1) and trinuclear (2) complexes, respectively. Direct analysis in real time mass spectrometry revealed the presence of FeIII- and CoII-based fragments in the gas phase upon evaporation of precursors 1 and 2 as well as of FeIII, FeII, and CoII species for complex 3. Theoretical investigation of two possible "valent isomers", [FeIII(acac)3][CoII(hfac)2] (1) and [CoIII(acac)3][FeII(hfac)2] (1'), provided an additional support for the metal site/oxidation state assignment giving a preference of 6.48 kcal/mol for the experimentally observed molecule 1. Magnetic susceptibility measurements data are in agreement with the presence of high-spin FeIII and CoII magnetic centers with weak anti-ferromagnetic coupling between those in molecules of 1 and 2. Highly volatile heterometallic complexes 1-3 were found to act as effective single-source precursors for the low-temperature preparation of iron-cobalt spinel oxides FexCo3-xO4 known as important materials for diverse energy-related applications.

3.
Inorg Chem ; 55(8): 3946-51, 2016 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-27054922

RESUMEN

A new series of heteroleptic bismuth-transition metal ß-diketonates [BiM(hfac)3(thd)2] (M = Mn (1), Co (2), and Ni (3); hfac = hexafluoroacetylacetonate, thd = tetramethylheptanedionate) with Bi:M = 1:1 ratio have been synthesized by stoichiometric reactions between homometallic reagents [Bi(III)(hfac)3] and [M(II)(thd)2]. On the basis of analysis of the metal-ligand interactions in heterometallic structures, the title compounds were formulated as ion-pair {[Bi(III)(thd)2](+)[M(II)(hfac)3](-)} complexes. The direct reaction between homometallic reagents proceeds with a full ligand exchange between main group and transition metal centers, yielding dinuclear heterometallic molecules. In heteroleptic molecules 1-3, the Lewis acidic, coordinatively unsaturated Bi(III) centers are chelated by two bulky, electron-donating thd ligands and maintain bridging interactions with three oxygen atoms of small, electron-withdrawing hfac groups that chelate the neighboring divalent transition metals. Application of the mixed-ligand approach allows one to change the connectivity pattern within the heterometallic assembly and to isolate highly volatile precursors with the proper Bi:M = 1:1 ratio. The mixed-ligand approach employed in this work opens broad opportunities for the synthesis of heterometallic (main group-transition metal) molecular precursors with specific M:M' ratio in the case when homoleptic counterparts either do not exist or afford products with an incorrect metal:metal ratio for the target materials. Heteroleptic complexes obtained in the course of this study represent prospective single-source precursors for the low-temperature preparation of multiferroic perovskite-type oxides.

4.
Chem Sci ; 6(5): 2835-2842, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29142682

RESUMEN

A novel series of mixed-valent, heteroleptic transition metal diketonates that can be utilized as prospective single-source precursors for the low-temperature preparation of oxide materials are reported. The first mixed-valent iron ß-diketonates with different FeIII/FeII ratios have been synthesized by applying the mixed-ligand approach. Based on nearly quantitative reaction yields and analysis of iron-oxygen bonds, these compounds were formulated as [FeIII(acac)3][FeII(hfac)2] (1) and [FeII(hfac)2][FeIII(acac)3][FeII(hfac)2] (2). In the above heteroleptic complexes, the Lewis acidic, coordinatively unsaturated FeII centers chelated by two hfac (hexafluoroacetylacetonate) ligands with electron-withdrawing substituents maintain bridging interactions with oxygen atoms of electron-donating acac (acetylacetonate) groups that chelate the neighboring FeIII atoms. Switching the ligands on FeIII and FeII atoms in starting reagents resulted in the instant ligand exchange between iron centers and in yet another polynuclear homometallic diketonate [FeII(hfac)2][FeIII(acac)2(hfac)][FeII(hfac)2] (3) that adheres to the same bonding pattern as in complexes 1 and 2. The proposed synthetic methodology has been extended to design heterometallic diketonates with different M : M' ratios. Homometallic parent molecules have been used as templates to obtain heterometallic mixed-valent [FeIII(acac)3][MnII(hfac)2] (4) and [NiII(hfac)2][FeIII(acac)3][NiII(hfac)2] (5) complexes. The combination of two different diketonate ligands with electron-donating and electron-withdrawing substituents was found to be crucial for maintaining the above mixed-valent heterometallic assemblies. Theoretical investigation of two possible "isomers", [FeIII(acac)3][MnII(hfac)2] (4) and [MnIII(acac)3][FeII(hfac)2] (4') provided an additional support for the metal site assignment giving a preference of 9.78 kcal mol-1 for the molecule 4. Heterometallic complexes obtained in the course of this study have been found to act as effective single-source precursors for the synthesis of mixed-transition metal oxide materials M x M'2-xO3 and M x M'1-xO. The title highly volatile precursors can be used for the low-temperature preparation of both amorphous and crystalline heterometallic oxides in the form of thin films or nanosized particles that are known to operate as efficient catalysts in oxygen evolution reaction.

5.
Inorg Chem ; 53(9): 4733-8, 2014 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-24754425

RESUMEN

Heterometallic single-source precursors for the Pb/Fe = 1:1 oxide materials, PbFe(ß-dik)4 (ß-dik = hexafluoroacetylacetonate (hfac, 1), acetylacetonate (acac, 2), and trifluoroacetylacetonate (tfac, 4)), have been isolated by three different solid-state synthetic methods. The crystal structures of heterometallic diketonates 1, 2, and 4 were found to contain polymeric chains built on alternating [Fe(ß-dik)2] and [Pb(ß-dik)2] units that are held together by bridging M-O interactions. Heterometallic precursors are highly volatile, but soluble only in coordinating solvents, in which they dissociate into solvated homometallic fragments. In order to design the heterometallic precursor with a proper metal/metal ratio and with a discrete molecular structure, we used a combination of two different diketonate ligands. Heteroleptic complex Pb2Fe2(hfac)6(acac)2 (5) has been obtained by optimized stoichiometric reaction of an addition of homo-Fe(acac)2 to heterometallic Pb2Fe(hfac)6 (3) diketonate that can be run in solution on a high scale. The combination of two ligands with electron-withdrawing and electron-donating groups allows changing the connectivity pattern within the heterometallic assembly and yields the precursor with a discrete tetranuclear structure. In accord with its molecular structure, heteroleptic complex 5 is soluble even in noncoordinating solvents and was found to retain its heterometallic structure in solution. Thermal decomposition of heterometallic precursors in air at 750 °C resulted in the target Pb2Fe2O5 oxide, a prospective multiferroic material. Prolonging the annealing time or increasing the decomposition temperature leads to another phase-pure lead-iron oxide PbFe12O19 that is a representative of the important family of magnetic hexaferrites.

6.
Acta Crystallogr C ; 69(Pt 12): 1427-30, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24311485

RESUMEN

The crystal structure of a tin-rich heterometallic supramolecular product, [CuSn8(C5HF6O2)2(C5H2F6O4)4] or [Sn4(hfpt)2-Cu(hfac)2-Sn4(hfpt)2], (I), is reported (hfpt is the tetraanion of 1,1,1,5,5,5-hexafluoropentane-2,2,4,4-tetraol and hfac is the anion of 1,1,1,5,5,5-hexafluoropentane-2,4-dione). Reaction between tin(II) tetraolate, [Sn4(hfpt)2], and copper(II) ß-diketonate, [Cu(hfac)2], was utilized for the preparation of (I). The asymmetric unit consists of the whole [Sn4(hfpt)2] unit and half of a [Cu(hfac)2] unit, with the Cu atom lying on an inversion center. Intermolecular Cu···O interactions from the axial positions of copper in [Cu(hfac)2] and O atoms of the hfpt ligand in [Sn4(hfpt)2] mediate the formation of a sandwich-type structure for (I). Additional intermolecular Sn···O interactions between neighbouring [Sn4(hfpt)2] units complete a two-dimensional network.


Asunto(s)
Complejos de Coordinación/química , Compuestos de Estaño/química , Cobre , Cristalografía por Rayos X , Enlace de Hidrógeno , Ligandos , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA