Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 12(7)2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39065256

RESUMEN

The treatment of antibiotic wastewater, which is known for its micro-toxicity, inhibition, and poor biochemistry, poses significant challenges, including complex processes, high energy demands, and secondary pollution. Bio-Fenton, a novel Fenton technology, enables the in situ production of H2O2 at near-neutral pH, having low energy requirements and sustainable properties, and reduces the hazards of H2O2 transportation and storage. We preliminary self-designed a heterogeneous Bio-Fenton reactor. An aerobic SBBR system with pure algae, pure bacteria, and bacteria-algae symbiosis was first constructed to investigate the optimal process conditions through the effects of carbon source concentration, light duration, bamboo charcoal filling rate, and dissolved oxygen (DO) content on the H2O2 production and COD removal. Second, the reactor was constructed by adding iron-carrying catalysts to remove ROX and SDZ wastewater. The results demonstrated that the optimal operating parameters of aerobic SBBR were an influent carbon source concentration of 500 mg/L, a water temperature of 20 ± 2 °C, pH = 7.5, a dissolved oxygen content of 5 mg/L, a light-dark ratio of 12 h:12 h, a light intensity of 2500 Lux, an HRT of 10 h, and a bamboo charcoal filling rate of 33%. Given these conditions, the bacterial-algal system was comprehensively found to be the most suitable biosystem for this experiment. Ultimately, the dynamically coupled Bio-Fenton process succeeded in the preliminary removal of 41.32% and 42.22% of the ROX and SDZ from wastewater, respectively.

2.
Water Res ; 259: 121876, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38852391

RESUMEN

This study investigated the coexistence and contamination of manganese (Mn(II)) and arsenite (As(III)) in groundwater and examined their oxidation behavior under different equilibrating parameters, including varying pH, bicarbonate (HCO3-) concentrations, and sodium hypochlorite (NaClO) oxidant concentrations. Results showed that if the molar ratio of NaClO: As(III) was >1, the oxidation of As(III) could be achieved within a minute with an extremely high oxidation rate of 99.7 %. In the binary system, the removal of As(III) prevailed over Mn(II). The As(III) oxidation efficiency increased from 59.8 ± 0.6 % to 70.8 ± 1.9 % when pH rose from 5.7 to 8.0. The oxidation reaction between As(III) and NaClO releases H+ ions, decreasing the pH from 6.77 to 6.19 and reducing the removal efficiency of Mn(II). The presence of HCO3- reduced the oxidation rate of Mn(II) from 63.2 % to 13.9 % within four hours. Instead, the final oxidation rate of Mn(II) increased from 68.1 % to 87.7 %. This increase can be attributed to HCO3- ions competing with the free Mn(II) for the adsorption sites on the sediments, inhibiting the formation of H+. Moreover, kinetic studies revealed that the oxidation reaction between Mn(II) and NaClO followed first-order kinetics based on their R2 values. The significant factors affecting the Mn(II) oxidation efficiency were the initial concentration of NaClO and pH. Applying an artificial neural network (ANN) model for data analysis proved to be an effective tool for predicting Mn(II) oxidation rates under different experimental conditions. The actual Mn(II) oxidation data and the predicted values obtained from the ANN model showed significant consistency. The training and validation data sets yielded R2 values of 0.995 and 0.992, respectively. Moreover, the ANN model highlights the importance of pH and NaClO concentrations in influencing the oxidation rate of Mn(II).


Asunto(s)
Arsenitos , Manganeso , Redes Neurales de la Computación , Oxidación-Reducción , Manganeso/química , Arsenitos/química , Cinética , Halogenación , Contaminantes Químicos del Agua/química , Concentración de Iones de Hidrógeno , Purificación del Agua , Bicarbonatos/química
3.
Molecules ; 29(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38930975

RESUMEN

As a toxic Volatile Organic Pollutant (TVOC), formaldehyde has a toxic effect on microorganisms, consequently inhibiting the biochemical process of formaldehyde wastewater treatment. Therefore, the selective degradation of formaldehyde is of great significance in achieving high-efficiency and low-cost formaldehyde wastewater treatment. This study constructed a heterogeneous Fe-ZSM-5/H2O2 Fenton system f or the selective degradation of target compounds. By immobilizing Fe3+ onto the surface of a ZSM-5 molecular sieve, Fe-ZSM-5 was prepared successfully. XRD, BET and FT-IR spectral studies showed that Fe-ZSM-5 was mainly composed of micropores. The influences of different variables on formaldehyde-selective heterogeneous Fenton degradation performance were studied. The 93.7% formaldehyde degradation and 98.2% selectivity of formaldehyde compared with glucose were demonstrated in the optimized Fenton system after 360 min. Notably, the resultant selective Fenton oxidation system had a wide range of pH suitability, from 3.0 to 10.0. Also, the Fe-ZSM-5 was used in five consecutive cycles without a significant drop in formaldehyde degradation efficiency. The use of reactive oxygen species scavengers indicated that the hydroxyl radical was the primary active species responsible for degrading formaldehyde. Furthermore, great degradation performance was acquired with high concentrations of formaldehyde for this system, and the degradation efficiency was more than 95.0%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA