Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1449158, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39290696

RESUMEN

Background: Ischaemic stroke is a leading cause of death and severe disability worldwide. Given the importance of protein synthesis in the inflammatory response and neuronal repair and regeneration after stroke, and that proteins are acquired by ribosomal translation of mRNA, it has been theorised that ribosome biogenesis may have an impact on promoting and facilitating recovery after stroke. However, the relationship between stroke and ribosome biogenesis has not been investigated. Methods: In the present study, a ribosome biogenesis gene signature (RSG) was developed using Cox and least absolute shrinkage and selection operator (LASSO) analysis. We classified ischaemic stroke patients into high-risk and low-risk groups using the obtained relevant genes, and further elucidated the immune infiltration of the disease using ssGSEA, which clarified the close relationship between ischaemic stroke and immune subgroups. The concentration of related proteins in the serum of stroke patients was determined by ELISA, and the patients were divided into groups to evaluate the effect of the ribosome biogenesis gene on patients. Through bioinformatics analysis, we identified potential IS-RSGs and explored future therapeutic targets, thereby facilitating the development of more effective therapeutic strategies and novel drugs against potential therapeutic targets in ischaemic stroke. Results: We obtained a set of 12 ribosome biogenesis-related genes (EXOSC5, MRPS11, MRPS7, RNASEL, RPF1, RPS28, C1QBP, GAR1, GRWD1, PELP1, UTP, ERI3), which play a key role in assessing the prognostic risk of ischaemic stroke. Importantly, risk grouping using ribosome biogenesis-related genes was also closely associated with important signaling pathways in stroke. ELISA detected the expression of C1QBP, RPS28 and RNASEL proteins in stroke patients, and the proportion of neutrophils was significantly increased in the high-risk group. Conclusions: The present study demonstrates the involvement of ribosomal biogenesis genes in the pathogenesis of ischaemic stroke, providing novel insights into the underlying pathogenic mechanisms and potential therapeutic strategies for ischaemic stroke.


Asunto(s)
Accidente Cerebrovascular Isquémico , Ribosomas , Humanos , Accidente Cerebrovascular Isquémico/genética , Accidente Cerebrovascular Isquémico/inmunología , Ribosomas/metabolismo , Ribosomas/genética , Masculino , Femenino , Anciano , Persona de Mediana Edad , Biología Computacional/métodos , Transcriptoma , Perfilación de la Expresión Génica , Proteínas Ribosómicas/genética , Biomarcadores
2.
World J Gastroenterol ; 30(29): 3488-3510, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39156502

RESUMEN

BACKGROUND: Hyperuricemia (HUA) is a public health concern that needs to be solved urgently. The lyophilized powder of Poecilobdella manillensis has been shown to significantly alleviate HUA; however, its underlying metabolic regulation remains unclear. AIM: To explore the underlying mechanisms of Poecilobdella manillensis in HUA based on modulation of the gut microbiota and host metabolism. METHODS: A mouse model of rapid HUA was established using a high-purine diet and potassium oxonate injections. The mice received oral drugs or saline. Additionally, 16S rRNA sequencing and ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry-based untargeted metabolomics were performed to identify changes in the microbiome and host metabolome, respectively. The levels of uric acid transporters and epithelial tight junction proteins in the renal and intestinal tissues were analyzed using an enzyme-linked immunosorbent assay. RESULTS: The protein extract of Poecilobdella manillensis lyophilized powder (49 mg/kg) showed an enhanced anti-trioxypurine ability than that of allopurinol (5 mg/kg) (P < 0.05). A total of nine bacterial genera were identified to be closely related to the anti-trioxypurine activity of Poecilobdella manillensis powder, which included the genera of Prevotella, Delftia, Dialister, Akkermansia, Lactococcus, Escherichia_Shigella, Enterococcus, and Bacteroides. Furthermore, 22 metabolites in the serum were found to be closely related to the anti-trioxypurine activity of Poecilobdella manillensis powder, which correlated to the Kyoto Encyclopedia of Genes and Genomes pathways of cysteine and methionine metabolism, sphingolipid metabolism, galactose metabolism, and phenylalanine, tyrosine, and tryptophan biosynthesis. Correlation analysis found that changes in the gut microbiota were significantly related to these metabolites. CONCLUSION: The proteins in Poecilobdella manillensis powder were effective for HUA. Mechanistically, they are associated with improvements in gut microbiota dysbiosis and the regulation of sphingolipid and galactose metabolism.


Asunto(s)
Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Hiperuricemia , Sanguijuelas , Animales , Hiperuricemia/tratamiento farmacológico , Hiperuricemia/sangre , Hiperuricemia/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Masculino , Sanguijuelas/microbiología , Ácido Úrico/sangre , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/microbiología , Metabolómica/métodos , ARN Ribosómico 16S/genética , Humanos , Disbiosis , Metaboloma/efectos de los fármacos
3.
Comput Struct Biotechnol J ; 24: 247-257, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38617891

RESUMEN

Objectives: Combination therapy of lenvatinib and immune checkpoint inhibitors (CLICI) has emerged as a promising approach for managing unresectable hepatocellular carcinoma (HCC). However, the response to such treatment is observed in only a subset of patients, underscoring the pressing need for reliable methods to identify potential responders. Materials & methods: This was a retrospective analysis involving 120 patients with unresectable HCC. They were divided into training (n = 72) and validation (n = 48) cohorts. We developed an interpretable deep learning model using multiphase computed tomography (CT) images to predict whether patients will respond or not to CLICI treatment, based on the Response Evaluation Criteria in Solid Tumors, version 1.1 (RECIST v1.1). We evaluated the models' performance and analyzed the impact of each CT phase. Critical regions influencing predictions were identified and visualized through heatmaps. Results: The multiphase model outperformed the best biphase and uniphase models, achieving an area under the curve (AUC) of 0.802 (95% CI = 0.780-0.824). The portal phase images were found to significantly enhance the model's predictive accuracy. Heatmaps identified six critical features influencing treatment response, offering valuable insights to clinicians. Additionally, we have made this model accessible via a web server at http://uhccnet.com/ for ease of use. Conclusions: The integration of multiphase CT images with deep learning-generated heatmaps for predicting treatment response provides a robust and practical tool for guiding CLICI therapy in patients with unresectable HCC.

4.
BMC Genomics ; 25(1): 86, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38254021

RESUMEN

BACKGROUND AND OBJECTIVES: Comprehensive analysis of multi-omics data is crucial for accurately formulating effective treatment plans for complex diseases. Supervised ensemble methods have gained popularity in recent years for multi-omics data analysis. However, existing research based on supervised learning algorithms often fails to fully harness the information from unlabeled nodes and overlooks the latent features within and among different omics, as well as the various associations among features. Here, we present a novel multi-omics integrative method MOSEGCN, based on the Transformer multi-head self-attention mechanism and Graph Convolutional Networks(GCN), with the aim of enhancing the accuracy of complex disease classification. MOSEGCN first employs the Transformer multi-head self-attention mechanism and Similarity Network Fusion (SNF) to separately learn the inherent correlations of latent features within and among different omics, constructing a comprehensive view of diseases. Subsequently, it feeds the learned crucial information into a self-ensembling Graph Convolutional Network (SEGCN) built upon semi-supervised learning methods for training and testing, facilitating a better analysis and utilization of information from multi-omics data to achieve precise classification of disease subtypes. RESULTS: The experimental results show that MOSEGCN outperforms several state-of-the-art multi-omics integrative analysis approaches on three types of omics data: mRNA expression data, microRNA expression data, and DNA methylation data, with accuracy rates of 83.0% for Alzheimer's disease and 86.7% for breast cancer subtyping. Furthermore, MOSEGCN exhibits strong generalizability on the GBM dataset, enabling the identification of important biomarkers for related diseases. CONCLUSION: MOSEGCN explores the significant relationship information among different omics and within each omics' latent features, effectively leveraging labeled and unlabeled information to further enhance the accuracy of complex disease classification. It also provides a promising approach for identifying reliable biomarkers, paving the way for personalized medicine.


Asunto(s)
Enfermedad de Alzheimer , Multiómica , Humanos , Metilación de ADN , Algoritmos , Biomarcadores
5.
Int J Biol Macromol ; 109: 950-954, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29162465

RESUMEN

Monacolin K, an inhibitor of HMG-CoA reductase, is a secondary metabolite synthesized by polyketide synthases (PKS) from Monascus ruber. The mokH gene encoding Zn(II)2Cys6 binding protein and mokA gene encoding polyketide synthase are presumed to activate monacolin K production. In this study, linoleic acid could be a quorum sensing signaling molecule to increase monacolin K production in the cyclic AMP(cAMP)-protein kinase A(PKA) signaling pathway. Analysis of the PKA activity and the cAMP concentration shows that linoleic acid could increase cAMP concentration and activate PKA. Analysis of the RT-qPCR products demonstrates that 256µM and 512µM linoleic acid can up-regulate mokH and mokA gene transcript levels. Especially with 512µM linoleic acid addition, linoleic acid increase 1.35 folds of monacolin K production, but 64µM linoleic acid increase 1.94 folds of red pigment production in Monascus ruber. These results show the cAMP-PkA pathway activity can up-regulate mokA and mokH gene, which enhance the yield of Monacolin K.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Ácido Linoleico/farmacología , Lovastatina/biosíntesis , Monascus/metabolismo , Pigmentos Biológicos/biosíntesis , Sintasas Poliquetidas/metabolismo , Transducción de Señal/efectos de los fármacos , Activación Enzimática , Percepción de Quorum
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA