Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 677(Pt A): 140-149, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39083891

RESUMEN

Multinary metal sulfides (MMSs) are highly suitable candidates for the application of electrocatalysis as they offer numerous parameters for optimizing the electronic structure and catalytic sites. Herein, a stable nanoarchitecture consisting of MMSs ((NiCoCrMnFe)Sx) nanoparticles embedded in S, N-codoped carbon (SNC) layers derived from metal organic framework (MOF) and supported on carbonized wood fibers (CWF) was fabricated by directly carbonization. Benefiting from this carbon-coated configuration, along with the synergistic effects within multinary metal systems, (NiCoCrMnFe)Sx@SNC/CWF delivers an exceptionally low overpotential of 260 mV at a high current density of 1000 mA cm-2, a small Tafel slope of 48.5 mV dec-1, and robust electrocatalytic stability. Furthermore, the (NiCoCrMnFe)Sx@SNC/CWF used as the cathode of rechargeable Zn-air batteries demonstrates higher power density and remarkable durability, surpassing that of commercial RuO2. Thus, we showcase the feasibility and advantages of employing highly efficient and durable MMSs materials for low-cost and sustainable energy conversion.

2.
J Colloid Interface Sci ; 658: 846-855, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38157609

RESUMEN

Bimetallic phosphides exhibit superior electrocatalytic activities and synergistic effects that make them ideal electrocatalysts for the urea oxidation reaction (UOR). Herein, P, N-codoped carbon-encapsulated cobalt/nickel phosphides derived from NiCo-MOF-74 (NiCoP@PNC) and anchored on P-doped carbonized wood fiber (PCWF) for UOR were prepared through synchronous carbonization and phosphorization. By benefiting from the synergistic effect of structural and electronic modulation, NiCoP@PNC/PCWF exhibits excellent UOR electrocatalytic performance under alkaline conditions, achieving a current density of 50 mA cm-2 with a potential of only 1.34 V (vs reversible hydrogen electrode, RHE) and continuous operation for more than 72 h. In addition, for the overall urea splitting, an electrolyzer using UOR replaced OER, which required only 1.50 V to achieve a current density of 50 mA cm-2 with excellent stability, 230 mV less than that required for the HER||OER system. In-depth theoretical analysis further proves that the strong synergistic effect between Co and Ni optimizes electronic structures, yielding excellent UOR properties. The synergistic strategy of structural and electrical modulation provides broad prospects for the design and synthesis of excellent UOR electrocatalysts for energy-saving hydrogen production by using renewable resources.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA