Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 446
Filtrar
1.
Phys Chem Chem Phys ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39279742

RESUMEN

The BiFeO3-BaTiO3 solid solution exhibits enhanced electric properties due to its modified phase structure with relaxor characteristics and reduced leakage current. Despite these advancements, the underlying mechanism behind the phase transition from a ferroelectric to a relaxor state in BF-BT ceramics remains largely unexplored. Here, the evolution of strain in (0.67 - x)BiFeO3-0.33BaTiO3-xBi(Mg0.5Zr0.5)O3 ceramics is investigated, with a focus on the strain transition from a ferroelectric to a relaxor phase. A strengthening of relaxor behavior is observed in the modified rhombohedral (R) and pseudocubic (PC) phase structure, resulting in optimal strain (Suni = 0.25%, Spos = 0.24%) at x = 0.04. The enhanced strain is attributed to the promotion of domain switching and the presence of strong random fields, with polar nanoregions integrating into a long-range ordered matrix. Furthermore, a gradual increase in strain with rising temperature is noted, driven by increased polarization and the expansion of ferroelectric domains. This study underscores the critical role of structural modifications in augmenting the electric response of BF-BT ceramics, thereby advancing the development of lead-free piezoelectric materials.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39258713

RESUMEN

Urea electrolysis can address pressing environmental concerns caused by urea-containing wastewater while realizing energy-saving hydrogen production. Highly efficient and affordable electrocatalysts are indispensable for realizing the great potential of this emerging technology. Among the numerous candidates, α-Ni(OH)2 has the merits of good electrocatalytic activity, adjustable heteroelement doping, and low cost; consequently, it has received tremendous attention in the electrolytic fields. Herein, a Y3+-doping strategy is developed to effectively enhance the catalytic performance of nickel hydroxide in the urea oxidation reaction (UOR). Our results show that Y3+ incorporation successfully modulates the electronic structure of α-Ni(OH)2 by inducing Ni3+ formation in the crystal lattice to initiate direct UOR, facilitates the Ni3+/Ni2+ redox transition with higher current responses to promote indirect UOR, and maintains the structural stability of YNi-10 (Ni2+/Y3+ molar ratio = 1:0.1) during long-term UOR operation. Owing to these features, the obtained YNi-10 sample exhibits a higher current density (127 vs 79 mA cm-2 at 1.5 V), a lower Tafel slope (48 vs 75 mV dec-1), a larger potential difference between the UOR and oxygen evolution reaction (OER, 0.26 vs 0.22 V at 80 mA cm-2), a higher reaction rate constant (1.1 × 105 vs 3.1 × 103 cm3 mol-1 s-1), and a reduced activation energy of UOR (2.9 vs 14.8 kJ mol-1) compared with the Y-free counterpart (YNi-0). This study presents a promising strategy to simultaneously boost direct and indirect UORs, providing new insights for further developing high-performance electrocatalysts.

3.
Nat Med ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095599

RESUMEN

Breakthrough fungal infections in patients on antimicrobial prophylaxis during allogeneic hematopoietic cell transplantation (allo-HCT) represent a major and often unexplained cause of morbidity and mortality. Candida parapsilosis is a common cause of invasive candidiasis and has been classified as a high-priority fungal pathogen by the World Health Organization. In high-risk allo-HCT recipients on micafungin prophylaxis, we show that heteroresistance (the presence of a phenotypically unstable, low-frequency subpopulation of resistant cells (~1 in 10,000)) underlies breakthrough bloodstream infections by C. parapsilosis. By analyzing 219 clinical isolates from North America, Europe and Asia, we demonstrate widespread micafungin heteroresistance in C. parapsilosis. Standard antimicrobial susceptibility tests, such as broth microdilution or gradient diffusion assays, which guide drug selection for invasive infections, fail to detect micafungin heteroresistance in C. parapsilosis. To facilitate rapid detection of micafungin heteroresistance in C. parapsilosis, we constructed a predictive machine learning framework that classifies isolates as heteroresistant or susceptible using a maximum of ten genomic features. These results connect heteroresistance to unexplained antifungal prophylaxis failure in allo-HCT recipients and demonstrate a proof-of-principle diagnostic approach with the potential to guide clinical decisions and improve patient care.

4.
ACS Synth Biol ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120961

RESUMEN

Microorganisms are shown to actively partition their intracellular resources, such as proteins, for growth optimization. Recent experiments have begun to reveal molecular components unpinning the partition; however, quantitatively, it remains unclear how individual parts orchestrate to yield precise resource allocation that is both robust and dynamic. Here, we developed a coarse-grained mathematical framework that centers on guanosine pentaphosphate (ppGpp)-mediated regulation and used it to systematically uncover the design principles of proteome allocation in Escherichia coli. Our results showed that the cellular ability of resource partition lies in an ultrasensitive, negative feedback-controlling topology with the ultrasensitivity arising from zero-order amino acid kinetics and the negative feedback from ppGpp-controlled ribosome synthesis. In addition, together with the time-scale separation between slow ribosome kinetics and fast turnovers of ppGpp and amino acids, the network topology confers the organism an optimization mechanism that mimics sliding mode control, a nonlinear optimization strategy that is widely used in man-made systems. We further showed that such a controlling mechanism is robust against parameter variations and molecular fluctuations and is also efficient for biomass production over time. This work elucidates the fundamental controlling mechanism of E. coli proteome allocation, thereby providing insights into quantitative microbial physiology as well as the design of synthetic gene networks.

5.
Artículo en Inglés | MEDLINE | ID: mdl-39132696

RESUMEN

BACKGROUND: Sarcopenic obesity is characterized by excess fat mass and diminished muscular mass/function. DNAJA3, a mitochondrial co-chaperone protein, plays a crucial role in skeletal muscle development. GMI, an immunomodulatory protein, promotes myogenic differentiation through DNAJA3 activation. This study aims to elucidate the physiological effects of muscular Dnaja3 haploinsufficiency on mitochondrial dysfunction and dysregulated lipid metabolism and to assess the efficacy of GMI in rescuing sarcopenic obesity both in vitro and in vivo. METHODS: We generated mouse strain with Dnaja3 heterozygosity (HSA-Dnaja3f/+) specifically in skeletal muscle. The body weight, body composition, and locomotor activity of WT and HSA-Dnaja3f/+ mice were examined. The isolated skeletal muscles and primary myoblasts from the WT and HSA-Dnaja3f/+ mice, at young or old age, were utilized to study the molecular mechanisms, mitochondrial respiration and ROS level, mitochondrial proteomes, and serological analyses, respectively. To evaluate the therapeutic efficacy of GMI, both short-term and long-term GMI treatment were administrated intraperitoneally to the HSA-Dnaja3f/+ young (4 weeks old) or adult (3 months old) mice for a duration of either 1 or 6 months, respectively. RESULTS: Muscular Dnaja3 heterozygosity resulted in impaired locomotor activity (P < 0.05), reduced muscular cross-sectional area (P < 0.0001), and up-regulation of lipogenesis (ACC2) and pro-inflammation (STAT3) in skeletal muscles (P < 0.05). Primary myoblasts from the HSA-Dnaja3f/+ mice displayed impaired mitochondrial respiration (P < 0.01) and imbalanced mitochondrial ROS levels. A systemic proteomic analysis of the purified mitochondria from the primary myoblasts was conducted to show the abnormalities in mitochondrial function and fatty acid metabolism (P < 0.0001). At age of 13 to 14 months, the HSA-Dnaja3f/+ mice displayed increased body fat mass (P < 0.001), reduced fat-free mass (P < 0.01), and impaired glucose and insulin tolerance (P < 0.01). The short-term GMI treatment improved locomotor activity (P < 0.01) and down-regulated the protein levels of STAT3 (P < 0.05), ACC2, and mitochondrial respiratory complex III (UQCRC2) (P < 0.01) via DNAJA3 activation. The long-term GMI treatment ameliorated fat mass accumulation, glucose intolerance, and systemic inflammation (AST) (P < 0.05) in skeletal muscle, while enhancing thermogenesis (UCP1) (P < 0.01) in eWAT. GMI treatment promoted myogenesis, enhanced oxygen consumption, and ameliorated STAT3 (P < 0.01) through DNAJA3 activation (P < 0.05) in vitro. CONCLUSIONS: Muscular Dnaja3 haploinsufficiency dysregulates mitochondrial function and lipid metabolism then leads to sarcopenic obesity. GMI emerges as a therapeutic regimen for sarcopenic obesity treatment through DNAJA3 activation.

6.
Cancer Discov ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39172012

RESUMEN

Triple-negative breast cancer (TNBC) shows an urgent need for new therapies. We discovered Ropporin-1 (ROPN1) as a target to treat TNBC with T-cells. ROPN1 showed high and homogenous expression in 90% of primary and metastatic TNBC but not in healthy tissues. HLA-A2-binding peptides were detected via immunopeptidomics and predictions and used to retrieve T-cell receptors (TCRs) from naïve repertoires. Following gene introduction into T-cells and stringent selection, we retrieved a highly specific TCR directed against the epitope FLYTYIAKV that did not recognize non-cognate epitopes from alternative source proteins. Notably, this TCR mediated killing of three-dimensional tumoroids in vitro and tumor cells in vivo and outperformed standard-of-care drugs. Finally, the T-cell product expressing this TCR and manufactured using a clinical protocol fulfilled standard safety and efficacy assays. Collectively, we have identified and preclinically validated ROPN1 as a target and anti-ROPN1 TCR T-cells as a treatment for the vast majority of TNBC patients.

7.
Commun Biol ; 7(1): 983, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138287

RESUMEN

The mechanism of action of bispecific antibodies (bsAbs) directing T-cell immunity to solid tumors is incompletely understood. Here, we screened a series of CD3xHER2 bsAbs using extracellular matrix (ECM) embedded breast cancer tumoroid arrays exposed to healthy donor-derived T-cells. An initial phase of random T-cell movement throughout the ECM (day 1-2), was followed by a bsAb-dependent phase of active T-cell recruitment to tumoroids (day 2-4), and tumoroid killing (day 4-6). Low affinity HER2 or CD3 arms were compensated for by increasing bsAb concentrations. Instead, a bsAb binding a membrane proximal HER2 epitope supported tumor killing whereas a bsAb binding a membrane distal epitope did not, despite similar affinities and intra-tumoroid localization of the bsAbs, and efficacy in 2D co-cultures. Initial T-cell-tumor contact through effective bsAbs triggered a wave of subsequent T-cell recruitment. This critical surge of T-cell recruitment was explained by paracrine signaling and preceded a full-scale T-cell tumor attack.


Asunto(s)
Anticuerpos Biespecíficos , Complejo CD3 , Comunicación Paracrina , Linfocitos T , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/inmunología , Humanos , Complejo CD3/inmunología , Complejo CD3/metabolismo , Linfocitos T/inmunología , Femenino , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Receptor ErbB-2/inmunología , Receptor ErbB-2/metabolismo , Línea Celular Tumoral
8.
Angew Chem Int Ed Engl ; : e202411639, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976517

RESUMEN

Dinuclear metal synergistic catalysis (DMSC) has been proved an effective approach to enhance catalytic efficiency in photocatalytic CO2 reduction reaction, while it remains challenge to design dinuclear metal complexes that can show DMSC effect. The main reason is that the influence of the microenvironment around dinuclear metal centres on catalytic activity has not been well recognized and revealed. Herein, we report a dinuclear cobalt complex featuring a planar structure, which displays outstanding catalytic efficiency for photochemical CO2-to-CO conversion. The turnover number (TON) and turnover frequency (TOF) values reach as high as 14457 and 0.40 s-1 respectively, 8.6 times higher than those of the corresponding mononuclear cobalt complex. Control experiments and theoretical calculations revealed that the enhanced catalytic efficiency of the dinuclear cobalt complex is due to the indirect DMSC effect between two CoII ions, energetically feasible one step two-electron transfer process by Co2 I,I intermediate to afford Co2 II,II(CO2 2-) intermediate and fast mass transfer closely related with the planar structure.

9.
Life (Basel) ; 14(7)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39063573

RESUMEN

Synthetic cathinones have gained increasing popularity in the illicit drug market, yet their abuse potential remains poorly understood. In this study, zebrafish were used to compare the addictive potential of three cathinone analogs, namely pentylone, eutylone, and N-ethylpentylone (NEP). The zebrafish received various doses (0 to 60 mg/kg) of the cathinone analogs by oral gavage over two sessions per day for two consecutive days to induce conditioned place preference (CPP). Pentylone, eutylone, and NEP dose-dependently induced CPP, with NEP showing significantly higher CPP than pentylone and eutylone at the dose of 20 mg/kg. The fish that received 60 mg/kg of cathinones underwent extinction, followed by reinstatement triggered by drug priming. NEP required six sessions to meet the criteria of extinction, followed by eutylone, which required four sessions, and pentylone, which required three sessions. Furthermore, NEP and eutylone at a dose of 40 mg/kg could reinstate the extinguished CPP, while 60 mg/kg of pentylone was necessary for CPP reinstatement. The persistence of susceptibility to reinstatement was also assessed at 7 and 14 days after the initial reinstatement. The CPP induced by all three cathinone analogs could be reinstated 7 days after the initial reinstatement, whereas only CPP induced by NEP, but not pentylone and eutylone, could be reinstated again after 14 days. Considering the potency to induce CPP, resistance to extinction, and the propensity for reinstatement, the abuse liability rank order of the cathinone analogs might be as follows: NEP > eutylone > pentylone. These findings suggest that the zebrafish CPP paradigm can serve as a viable model for assessing the relative abuse liability of substances.

10.
Adv Healthc Mater ; : e2401406, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007245

RESUMEN

Tissue engineering for penile corpora cavernosa defects requires microvascular system reconstruction.GelMA hydrogels show promise for tissue regeneration. However, using stem cells faces challenges such as immune rejection, limited proliferation and differentiation, and biosafety concerns. Therefore, acellular tissue regeneration may avoid these issues. Exosomes are used from muscle-derived stem cells (MDSCs) to modify 3D-printed hydrogel scaffolds for acellular tissue regeneration. Hypoxia-preconditioned MDSC-derived exosomes are obtained to enhance the therapeutic effect. In contrast to normoxic exosomes (N-Exos), hypoxic exosomes (H-Exos) are found to markedly enhance the proliferation, migration, and capillary-like tube formation of human umbilical vein endothelial cells (HUVECs). High-throughput sequencing analysis of miRNAs isolated from both N-Exos and H-Exos revealed a significant upregulation of miR-21-5p in H-Exos following hypoxic preconditioning. Further validation demonstrated that the miR-21-5p/PDCD4 pathway promoted the proliferation of HUVECs. Epigallocatechin gallate (EGCG) is introduced to improve the mechanical properties and biocompatibility of GelMA hydrogels. EGCG-GelMA scaffolds loaded with different types of Exos are transplanted to repair rabbit penile corpora cavernosa defects, observed the blood flow and repair status of the defect site through color Doppler ultrasound and magnetic resonance imaging, and ultimately restored the rabbit penile erection function and successfully bred offspring. Thus, acellular hydrogel scaffolds offer an effective treatment for penile corpora cavernosa defects.

11.
iScience ; 27(5): 109738, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38706844

RESUMEN

Tumor tissues often contain high extracellular adenosine, promoting an immunosuppressed environment linked to mesenchymal transition and immune evasion. Here, we show that loss of the epithelial transcription factor, GRHL2, triggers NT5E/CD73 ecto-enzyme expression, augmenting the conversion of AMP to adenosine. GRHL2 binds an intronic NT5E sequence and is negatively correlated with NT5E/CD73 in breast cancer cell lines and patients. Remarkably, the increased adenosine levels triggered by GRHL2 depletion in MCF-7 breast cancer cells do not suppress but mildly increase CD8 T cell recruitment, a response mimicked by a stable adenosine analog but prevented by CD73 inhibition. Indeed, NT5E expression shows a positive rather than negative association with CD8 T cell infiltration in breast cancer patients. These findings reveal a GRHL2-regulated immune modulation mechanism in breast cancers and show that extracellular adenosine, besides its established role as a suppressor of T cell-mediated cytotoxicity, is associated with enhanced T cell recruitment.

12.
Sci Rep ; 14(1): 11011, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744937

RESUMEN

Spider silk is a promising material with great potential in biomedical applications due to its incredible mechanical properties and resistance to degradation of commercially available bacterial strains. However, little is known about the bacterial communities that may inhabit spider webs and how these microorganisms interact with spider silk. In this study, we exposed two exopolysaccharide-secreting bacteria, isolated from webs of an orb spider, to major ampullate (MA) silk from host spiders. The naturally occurring lipid and glycoprotein surface layers of MA silk were experimentally removed to further probe the interaction between bacteria and silk. Extensibility of major ampullate silk produced by Triconephila clavata that was exposed to either Microbacterium sp. or Novosphigobium sp. was significantly higher than that of silk that was not exposed to bacteria (differed by 58.7%). This strain-enhancing effect was not observed when the lipid and glycoprotein surface layers of MA silks were removed. The presence of exopolysaccharides was detected through NMR from MA silks exposed to these two bacteria but not from those without exposure. Here we report for the first time that exopolysaccharide-secreting bacteria inhabiting spider webs can enhance extensibility of host MA silks and silk surface layers play a vital role in mediating such effects.


Asunto(s)
Seda , Arañas , Animales , Arañas/microbiología , Arañas/metabolismo , Seda/metabolismo , Bacterias/metabolismo , Polisacáridos Bacterianos/metabolismo
13.
J Phys Chem Lett ; 15(19): 5096-5102, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38709010

RESUMEN

Multivalent-ion battery technologies are increasingly attractive options for meeting diverse energy storage needs. Calcium ion batteries (CIB) are particularly appealing candidates for their earthly abundance, high theoretical volumetric energy density, and relative safety advantages. At present, only a few Ca-ion electrolyte systems are reported to reversibly plate at room temperature: for example, aluminates and borates, including Ca[TPFA]2, where [TPFA]- = [Al(OC(CF3)3)4]- and Ca[B(hfip)4]2, [B(hfip)4]2- = [B(OCH(CF3)2)4]-. Analyzing the structure of these salts reveals a common theme: the prevalent use of a weakly coordinating anion (WCA) consisting of a tetracoordinate aluminum/boron (Al/B) center with fluorinated alkoxides. Leveraging the concept of theory-aided design, we report an innovative, one-pot synthesis of two new calcium-ion electrolyte salts (Ca[Al(tftb)4]2, Ca[Al(hftb)4]2) and two reported salts (Ca[Al(hfip)4]2 and Ca[TPFA]2) where hfip = (-OCH(CF3)2), tftb = (-OC(CF3)(Me)2), hftb = (-OC(CF3)2(Me)), [TPFA]- = [Al(OC(CF3)3)4]-. We also reveal the dependence of Coulombic efficiency on their inherent propensity for cation-anion coordination.

14.
BMJ Open ; 14(5): e080858, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38719315

RESUMEN

OBJECTIVES: To evaluate whether nephrotic syndrome (NS) and further corticosteroid (CS) use increase the risk of osteoporosis in Asian population during the period January 2000-December 2010. DESIGN: Nationwide population-based retrospective cohort study. SETTING: All healthcare facilities in Taiwan. PARTICIPANTS: A total of 28 772 individuals were enrolled. INTERVENTIONS: 26 614 individuals with newly diagnosed NS between 2000 and 2010 were identified and included in out study. 26 614 individuals with no NS diagnosis prior to the index date were age matched as controls. Diagnosis of osteoporosis prior to the diagnosis of NS or the same index date was identified, age, sex and NS-associated comorbidities were adjusted. PRIMARY OUTCOME MEASURE: To identify risk differences in developing osteoporosis among patients with a medical history of NS. RESULTS: After adjusting for covariates, osteoporosis risk was found to be 3.279 times greater in the NS cohort than in the non-NS cohort, when measured over 11 years after NS diagnosis. Stratification revealed that age older than 18 years, congestive heart failure, hyperlipidaemia, chronic kidney disease, liver cirrhosis and NS-related disease including diabetes mellitus, hepatitis B infection, hepatitis C infection, lymphoma and hypothyroidism, increased the risk of osteoporosis in the NS cohort, compared with the non-NS cohort. Additionally, osteoporosis risk was significantly higher in NS patients with CS use (adjusted HR (aHR)=3.397). The risk of osteoporosis in NS patients was positively associated with risk of hip and vertebral fracture (aHR=2.130 and 2.268, respectively). A significant association exists between NS and subsequent risk for osteoporosis. CONCLUSION: NS patients, particularly those treated with CS, should be evaluated for subsequent risk of osteoporosis.


Asunto(s)
Síndrome Nefrótico , Osteoporosis , Humanos , Taiwán/epidemiología , Osteoporosis/epidemiología , Osteoporosis/complicaciones , Femenino , Estudios Retrospectivos , Masculino , Persona de Mediana Edad , Síndrome Nefrótico/epidemiología , Síndrome Nefrótico/complicaciones , Adulto , Anciano , Factores de Riesgo , Comorbilidad , Adulto Joven , Adolescente , Corticoesteroides/efectos adversos
15.
Nat Commun ; 15(1): 3850, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719864

RESUMEN

The K+ uptake system KtrAB is essential for bacterial survival in low K+ environments. The activity of KtrAB is regulated by nucleotides and Na+. Previous studies proposed a putative gating mechanism of KtrB regulated by KtrA upon binding to ATP or ADP. However, how Na+ activates KtrAB and the Na+ binding site remain unknown. Here we present the cryo-EM structures of ATP- and ADP-bound KtrAB from Bacillus subtilis (BsKtrAB) both solved at 2.8 Å. A cryo-EM density at the intra-dimer interface of ATP-KtrA was identified as Na+, as supported by X-ray crystallography and ICP-MS. Thermostability assays and functional studies demonstrated that Na+ binding stabilizes the ATP-bound BsKtrAB complex and enhances its K+ flux activity. Comparing ATP- and ADP-BsKtrAB structures suggests that BsKtrB Arg417 and Phe91 serve as a channel gate. The synergism of ATP and Na+ in activating BsKtrAB is likely applicable to Na+-activated K+ channels in central nervous system.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Proteínas de Transporte de Catión , Potasio , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Sitios de Unión , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/química , Microscopía por Crioelectrón , Cristalografía por Rayos X , Modelos Moleculares , Potasio/metabolismo , Unión Proteica , Sodio/metabolismo
16.
Zhen Ci Yan Jiu ; 49(5): 472-479, 2024 May 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38764118

RESUMEN

OBJECTIVES: To investigate the effect of Peitu Yimu(strengthening spleen and soothing liver) acupuncture on intestinal mucosal barrier function and corticotropin-releasing factor (CRF)/CRF receptor 1 (CRFR1) pathway in rats with diarrhea-predominant irritable bowel syndrome (IBS-D), so as to explore its underlying mechanism in alleviating IBS-D. METHODS: Forty female SD rats were randomly divided into blank, model, electroacupuncture (EA), and agonist groups, with 10 rats in each group. Except for the blank group, rats in the other groups were given folium sennae infusion by gavage combined with chronic unpredictable mild stress to establish IBS-D model. Rats in the EA group received acupuncture at "Tianshu"(ST25) and EA at "Zusanli"(ST36) and "Taichong"(LR3) (2 Hz/15 Hz) on one side for 20 min, with the side chosen alternately every other day, for 14 days after modeling. Rats in the agonist group received acupuncture 30 min after intravenous injection of CRFR1 agonist urocortin, with the same manipulation method and time as the EA group. Before and after intervention, visceral pain threshold and stool Bristol scores were measured. Elevated plus maze test and open field test were used to detect anxiety and depression like behavior of rats. ELISA was used to detect the contents of CRF and CRFR1 in rats serum. Immunohistochemistry was used to detect the positive expressions of CRF, CRFR1, zonula occludens protein 1(ZO-1), occlusal protein(Occludin), and closure protein 1 (Claudin-1) in colon tissue. RESULTS: Compared with the blank group, the visceral pain threshold, open arm time percentage (OT%), total distance of movement in the open field test, and positive expression of ZO-1, Occludin, and Claudin-1 in colon were decreased (P<0.01, P<0.05), while Bristol stool scores, serum CRF and CRFR1 contents, and positive expressions of CRF and CRFR1 in colon were increased (P<0.01) in the model group. After intervention and compared with the model group, the visceral pain threshold, OT%, total distance of movement in the open field test, and positive expressions of ZO-1, Occludin, and Claudin-1 in colon were increased (P<0.05, P<0.01), while Bristol stool scores, serum CRF and CRFR1 contents, and positive expressions of CRF and CRFR1 in colon were decreased (P<0.01) in the EA group;the Bristol stool scores, serum CRF content, and CRF positive expression in colon were significantly decreased in the agonist group (P<0.01). CONCLUSIONS: Peitu Yimu acupuncture can significantly improve visceral hypersensitivity and anxiety-depression state in IBS-D rats. Its mechanism may be related to the inhibition of CRF/CRFR1 pathway and restoration of intestinal tight junction protein expressions.


Asunto(s)
Terapia por Acupuntura , Diarrea , Mucosa Intestinal , Síndrome del Colon Irritable , Receptores de Hormona Liberadora de Corticotropina , Animales , Femenino , Humanos , Ratas , Puntos de Acupuntura , Claudina-1/metabolismo , Claudina-1/genética , Hormona Liberadora de Corticotropina/metabolismo , Hormona Liberadora de Corticotropina/genética , Diarrea/terapia , Diarrea/metabolismo , Diarrea/genética , Modelos Animales de Enfermedad , Mucosa Intestinal/metabolismo , Síndrome del Colon Irritable/terapia , Síndrome del Colon Irritable/metabolismo , Síndrome del Colon Irritable/genética , Ratas Sprague-Dawley , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Receptores de Hormona Liberadora de Corticotropina/genética , Proteína de la Zonula Occludens-1/metabolismo , Proteína de la Zonula Occludens-1/genética
17.
Nat Microbiol ; 9(6): 1555-1565, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38698178

RESUMEN

The detection of oral bacteria in faecal samples has been associated with inflammation and intestinal diseases. The increased relative abundance of oral bacteria in faeces has two competing explanations: either oral bacteria invade the gut ecosystem and expand (the 'expansion' hypothesis), or oral bacteria transit through the gut and their relative increase marks the depletion of other gut bacteria (the 'marker' hypothesis). Here we collected oral and faecal samples from mouse models of gut dysbiosis (antibiotic treatment and DSS-induced colitis) and used 16S ribosomal RNA sequencing to determine the abundance dynamics of oral bacteria. We found that the relative, but not absolute, abundance of oral bacteria increases, reflecting the 'marker' hypothesis. Faecal microbiome datasets from diverse patient cohorts, including healthy individuals and patients with allogeneic haematopoietic cell transplantation or inflammatory bowel disease, consistently support the 'marker' hypothesis and explain associations between oral bacterial abundance and patient outcomes consistent with depleted gut microbiota. By distinguishing between the two hypotheses, our study guides the interpretation of microbiome compositional data and could potentially identify cases where therapies are needed to rebuild the resident microbiome rather than protect against invading oral bacteria.


Asunto(s)
Bacterias , Disbiosis , Heces , Microbioma Gastrointestinal , Boca , ARN Ribosómico 16S , Heces/microbiología , Humanos , Animales , Ratones , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , ARN Ribosómico 16S/genética , Disbiosis/microbiología , Boca/microbiología , Colitis/microbiología , Modelos Animales de Enfermedad , Enfermedades Inflamatorias del Intestino/microbiología , Antibacterianos/farmacología , Ratones Endogámicos C57BL , Femenino , Sulfato de Dextran
18.
Ecol Evol ; 14(4): e11324, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38681181

RESUMEN

Galaxaura divaricata is a partially calcified macroalga that hampers coral recruitment, growth, and recovery via the excretion of allelopathic secondary metabolites. Herbivorous fishes are not major consumers of Galaxaura spp. and there is a need to understand feeding preferences for Galaxaura divaricata in other macroherbivores, like sea urchins and green sea turtles that could act as potential controlling agents. Under certain environmental conditions, G. divaricata can proliferate and overgrow degraded reefs for several years, as documented for several coral patch reefs in the lagoon of Dongsha Atoll, South China Sea. This study aimed to experimentally test the feeding preferences of five species of sea urchin and two individual green sea turtles, Chelonia mydas, for G. divaricata. Specifically, we quantified and compared the consumption rates of the allelopathic G. divaricata with Gracilaria edulis, a nonallelopathic, fleshy red alga, known to be highly favored by herbivores. Results showed that the five urchin species fed on both G. edulis and G. divaricata. However, urchins consumed 2-8 times less wet weight of G. divaricata (range 0.3-3.1 g urchin-1 24 h-1) compared to G. edulis (range 0.6-18 g urchin-1 24 h-1), suggesting that urchin grazing may exert some control on G. divaricata abundance but is likely ineffective for a large-scale removal of the alga. Further, both green sea turtles avoided G. divaricata and selectively fed on G. edulis. More experiments are needed to test the potential role of herbivores in controlling the overgrowth of coral competitive and allelopathic macroalgae, like Galaxaura on coral reefs.

19.
Arch Toxicol ; 98(6): 1827-1842, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38563869

RESUMEN

Aminoglycosides are commonly used antibiotics for treatment of gram-negative bacterial infections, however, they might act on inner ear, leading to hair-cell death and hearing loss. Currently, there is no targeted therapy for aminoglycoside ototoxicity, since the underlying mechanisms of aminoglycoside-induced hearing impairments are not fully defined. This study aimed to investigate whether the calcium channel blocker verapamil and changes in intracellular & extracellular calcium could ameliorate aminoglycoside-induced ototoxicity in zebrafish. The present findings showed that a significant decreased number of neuromasts in the lateral lines of zebrafish larvae at 5 days' post fertilization after neomycin (20 µM) and gentamicin (20 mg/mL) exposure, which was prevented by verapamil. Moreover, verapamil (10-100 µM) attenuated aminoglycoside-induced toxic response in different external calcium concentrations (33-3300 µM). The increasing extracellular calcium reduced hair cell loss from aminoglycoside exposure, while lower calcium facilitated hair cell death. In contrast, calcium channel activator Bay K8644 (20 µM) enhanced aminoglycoside-induced ototoxicity and reversed the protective action of higher external calcium on hair cell loss. However, neomycin-elicited hair cell death was not altered by caffeine, ryanodine receptor (RyR) agonist, and RyR antagonists, including thapsigargin, ryanodine, and ruthenium red. The uptake of neomycin into hair cells was attenuated by verapamil and under high external calcium concentration. Consistently, the production of reactive oxygen species (ROS) in neuromasts exposed to neomycin was also reduced by verapamil and high external calcium. Significantly, zebrafish larvae when exposed to neomycin exhibited decreased swimming distances in reaction to droplet stimulus when compared to the control group. Verapamil and elevated external calcium effectively protected the impaired swimming ability of zebrafish larvae induced by neomycin. These data imply that prevention of hair cell damage correlated with swimming behavior against aminoglycoside ototoxicity by verapamil and higher external calcium might be associated with inhibition of excessive ROS production and aminoglycoside uptake through cation channels. These findings indicate that calcium channel blocker and higher external calcium could be applied to protect aminoglycoside-induced listening impairments.


Asunto(s)
Antibacterianos , Bloqueadores de los Canales de Calcio , Calcio , Gentamicinas , Células Ciliadas Auditivas , Neomicina , Verapamilo , Pez Cebra , Animales , Bloqueadores de los Canales de Calcio/farmacología , Calcio/metabolismo , Verapamilo/farmacología , Neomicina/toxicidad , Células Ciliadas Auditivas/efectos de los fármacos , Células Ciliadas Auditivas/metabolismo , Gentamicinas/toxicidad , Antibacterianos/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Ototoxicidad/prevención & control , Aminoglicósidos/toxicidad , Sistema de la Línea Lateral/efectos de los fármacos , Larva/efectos de los fármacos , Pérdida Auditiva/inducido químicamente , Pérdida Auditiva/prevención & control
20.
ArXiv ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38659636

RESUMEN

Fecal Microbiota Transplant (FMT) is an FDA approved treatment for recurrent Clostridium difficile infections, and is being explored for other clinical applications, from alleviating digestive and neurological disorders, to priming the microbiome for cancer treatment, and restoring microbiomes impacted by cancer treatment. Quantifying the extent of engraftment following an FMT is important in determining if a recipient didn't respond because the engrafted microbiome didn't produce the desired outcomes (a successful FMT, but negative treatment outcome), or the microbiome didn't engraft (an unsuccessful FMT and negative treatment outcome). The lack of a consistent methodology for quantifying FMT engraftment extent hinders the assessment of FMT success and its relation to clinical outcomes, and presents challenges for comparing FMT results and protocols across studies. Here we review 46 studies of FMT in humans and model organisms and group their approaches for assessing the extent to which an FMT engrafts into three criteria: 1) Chimeric Asymmetric Community Coalescence investigates microbiome shifts following FMT engraftment using methods such as alpha diversity comparisons, beta diversity comparisons, and microbiome source tracking. 2) Donated Microbiome Indicator Features tracks donated microbiome features (e.g., amplicon sequence variants or species of interest) as a signal of engraftment with methods such as differential abundance testing based on the current sample collection, or tracking changes in feature abundances that have been previously identified (e.g., from FMT or disease-relevant literature). 3) Temporal Stability examines how resistant post-FMT recipient's microbiomes are to reverting back to their baseline microbiome. Individually, these criteria each highlight a critical aspect of microbiome engraftment; investigated together, however, they provide a clearer assessment of microbiome engraftment. We discuss the pros and cons of each of these criteria, providing illustrative examples of their application. We also introduce key terminology and recommendations on how FMT studies can be analyzed for rigorous engraftment extent assessment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA