RESUMEN
BACKGROUND: Hypertrophic scars (HS) cause functional impairment and cosmetic deformities following surgeries or burns (30% to 94%). There is no target therapy yet because the pathogenesis of HS progression is not well-known. In tissue fibrosis, Zinc finger E-box binding homeobox 1 (ZEB1) abnormal upregulation is an important cause for extracellular matrix (ECM) overexpression, which is the main molecular change in HS. Therefore, we hypothesized that ZEB1-knockdown inhibits HS formation. METHODS: ZEB1 expression in human HS and TGF-ß1-induced fibroblasts were identified by PCR and western blotting. ZEB1 was knockdown by siRNA in HS fibroblasts (HSFs) and mouse HS model (C57/BL6, male, 8-12 weeks). After 8-hour-transfection, HSFs were subjected to PCR, western blotting and CCK-8, apoptosis, migration and contraction assays. Mice HS were analyzed by HE staining, PCR and western blotting after 56 days. RESULTS: ZEB1 was upregulated in HS tissue (2.0-fold; p < 0.001). ZEB1 knockdown inhibited HSFs activity (0.6 to 0.7-fold; p < 0.001), the expression of fibrotic markers (0.4 to 0.6-fold; p < 0.001) and ß-catenin, cyclinD1 and c-Myc expression (0.5-fold; p < 0.001). In mouse HS models, HS skin thickness was thinner (1.60 ± 0.40 mm vs. 4.04 ± 0.36 mm; p < 0.001) after ZEB1 knockdown. CONCLUSIONS: Knockdown of ZEB1 inhibits HS formation both in vitro and in vivo. However, this is an in vitro/mouse model and more validation is needed. CLINICAL RELEVANCE STATEMENT: The discovery of ZEB1 as a mediator of HS formation might be a potential therapeutic target in HS treatment.
RESUMEN
BACKGROUND: The combination of Wolbachia-based incompatible insect technique (IIT) and radiation-based sterile insect technique (SIT) can be used for population suppression of Aedes aegypti. Our main objective was to evaluate whether open-field mass-releases of wAlbB-infected Ae. aegypti males, as part of an Integrated Vector Management (IVM) plan led by the Mexican Ministry of Health, could suppress natural populations of Ae. aegypti in urbanized settings in south Mexico. METHODOLOGY/PRINCIPAL FINDINGS: We implemented a controlled before-and-after quasi-experimental study in two suburban localities of Yucatan (Mexico): San Pedro Chimay (SPC), which received IIT-SIT, and San Antonio Tahdzibichén used as control. Release of wAlbB Ae. aegypti males at SPC extended for 6 months (July-December 2019), covering the period of higher Ae. aegypti abundance. Entomological indicators included egg hatching rates and outdoor/indoor adult females collected at the release and control sites. Approximately 1,270,000 lab-produced wAlbB-infected Ae. aegypti males were released in the 50-ha treatment area (2,000 wAlbB Ae. aegypti males per hectare twice a week in two different release days, totaling 200,000 male mosquitoes per week). The efficacy of IIT-SIT in suppressing indoor female Ae. aegypti density (quantified from a generalized linear mixed model showing a statistically significant reduction in treatment versus control areas) was 90.9% a month after initiation of the suppression phase, 47.7% two months after (when number of released males was reduced in 50% to match local abundance), 61.4% four months after (when initial number of released males was re-established), 88.4% five months after and 89.4% at six months after the initiation of the suppression phase. A proportional, but lower, reduction in outdoor female Ae. aegypti was also quantified (range, 50.0-75.2% suppression). CONCLUSIONS/SIGNIFICANCE: Our study, the first open-field pilot implementation of Wolbachia IIT-SIT in Mexico and Latin-America, confirms that inundative male releases can significantly reduce natural populations of Ae. aegypti. More importantly, we present successful pilot results of the integration of Wolbachia IIT-SIT within a IVM plan implemented by Ministry of Health personnel.
Asunto(s)
Aedes , Infertilidad Masculina , Wolbachia , Animales , Femenino , Humanos , Insectos , Masculino , México , Control de Mosquitos/métodos , Mosquitos Vectores , Proyectos PilotoRESUMEN
Abstract This study aimed to determine the association between the polymorphisms and haplotypes in the xeroderma pigmentosum group D (XPD) gene and the risk of pancreatic cancer in the Chinese Han population. SNaPshot was used for genotyping six SNP sites of the XPD gene. Comparisons of the correlations between different genotypes in combination with smoking and the susceptibility to pancreatic cancer were performed. Individual pancreatic cancer risk in patients who carry mutant C alleles (AC, CC, and AC+CC) at rs13181 increased (p < 0.05). Taking non-smoking individuals who carry the AA genotype as a reference, and non-smoking individuals who carry mutant allele C (AC+CC), the risk of pancreatic cancer increased by 3.343 times in individuals who smoked ≥ 20 cigarettes daily, 3.309 times in individuals who smoked ≥ 14 packs per year, 5.011 times in individuals who smoked ≥ 24 packs per year, and 4.013 times in the individuals who smoked ≥ 37 packs per year (P < 0.05). In addition, haplotype analysis revealed that haplotype AGG, which comprised rs13181, rs3916874 and rs238415, was associated with a 1.401-fold increase in pancreatic cancer risk (p < 0.05). We conclude that the polymorphism of XPD Lys751Gln (rs13181) in combination with smoking contributes to increased risk of pancreatic cancer in the Chinese Han population. Haplotype AGG might be a susceptibility haplotype for pancreatic cancer.
RESUMEN
This study aimed to determine the association between the polymorphisms and haplotypes in the xeroderma pigmentosum group D (XPD) gene and the risk of pancreatic cancer in the Chinese Han population. SNaPshot was used for genotyping six SNP sites of the XPD gene. Comparisons of the correlations between different genotypes in combination with smoking and the susceptibility to pancreatic cancer were performed. Individual pancreatic cancer risk in patients who carry mutant C alleles (AC, CC, and AC+CC) at rs13181 increased (p < 0.05). Taking non-smoking individuals who carry the AA genotype as a reference, and non-smoking individuals who carry mutant allele C (AC+CC), the risk of pancreatic cancer increased by 3.343 times in individuals who smoked ≥ 20 cigarettes daily, 3.309 times in individuals who smoked ≥ 14 packs per year, 5.011 times in individuals who smoked ≥ 24 packs per year, and 4.013 times in the individuals who smoked ≥ 37 packs per year (P < 0.05). In addition, haplotype analysis revealed that haplotype AGG, which comprised rs13181, rs3916874 and rs238415, was associated with a 1.401-fold increase in pancreatic cancer risk (p < 0.05). We conclude that the polymorphism of XPD Lys751Gln (rs13181) in combination with smoking contributes to increased risk of pancreatic cancer in the Chinese Han population. Haplotype AGG might be a susceptibility haplotype for pancreatic cancer.
RESUMEN
It is well known that the type III secretion system (T3SS) and type III (T3) effectors are essential for the pathogenicity of most bacterial phytopathogens and that the expression of T3SS and T3 effectors is suppressed in rich media but induced in minimal media and plants. To facilitate in-depth studies on T3SS and T3 effectors, it is crucial to establish a medium for T3 effector expression and secretion. Xanthomonas campestris pv. campestris (Xcc) is a model bacterium for studying plant-pathogen interactions. To date no medium for Xcc T3 effector secretion has been defined. Here, we compared four minimal media (MME, MMX, XVM2, and XOM2) which are reported for T3 expression induction in Xanthomonas spp. and found that MME is most efficient for expression and secretion of Xcc T3 effectors. By optimization of carbon and nitrogen sources and pH value based on MME, we established XCM1 medium, which is about 3 times stronger than MME for Xcc T3 effectors secretion. We further optimized the concentration of phosphate, calcium, and magnesium in XCM1 and found that XCM1 with a lower concentration of magnesium (renamed as XCM2) is about 10 times as efficient as XCM1 (meanwhile, about 30 times stronger than MME). Thus, we established an inducing medium XCM2 which is preferred for T3 effector secretion in Xcc.
Asunto(s)
Sistemas de Secreción Bacterianos , Proteínas Bacterianas , Medios de Cultivo/química , Factores de Virulencia/metabolismo , Xanthomonas campestris/crecimiento & desarrollo , Xanthomonas campestris/metabolismoRESUMEN
It is well known that the type III secretion system (T3SS) and type III (T3) effectors are essential for the pathogenicity of most bacterial phytopathogens and that the expression of T3SS and T3 effectors is suppressed in rich media but induced in minimal media and plants. To facilitate in-depth studies on T3SS and T3 effectors, it is crucial to establish a medium for T3 effector expression and secretion. Xanthomonas campestris pv. campestris (Xcc) is a model bacterium for studying plant-pathogen interactions. To date no medium for Xcc T3 effector secretion has been defined. Here, we compared four minimal media (MME, MMX, XVM2, and XOM2) which are reported for T3 expression induction in Xanthomonas spp. and found that MME is most efficient for expression and secretion of Xcc T3 effectors. By optimization of carbon and nitrogen sources and pH value based on MME, we established XCM1 medium, which is about 3 times stronger than MME for Xcc T3 effectors secretion. We further optimized the concentration of phosphate, calcium, and magnesium in XCM1 and found that XCM1 with a lower concentration of magnesium (renamed as XCM2) is about 10 times as efficient as XCM1 (meanwhile, about 30 times stronger than MME). Thus, we established an inducing medium XCM2 which is preferred for T3 effector secretion in Xcc.(AU)
Asunto(s)
Xanthomonas campestris , Receptores de Hormona Tiroidea , Western Blotting , Glucuronidasa , TriyodotironinaRESUMEN
It is well known that the type III secretion system (T3SS) and type III (T3) effectors are essential for the pathogenicity of most bacterial phytopathogens and that the expression of T3SS and T3 effectors is suppressed in rich media but induced in minimal media and plants. To facilitate in-depth studies on T3SS and T3 effectors, it is crucial to establish a medium for T3 effector expression and secretion. Xanthomonas campestris pv. campestris (Xcc) is a model bacterium for studying plant-pathogen interactions. To date no medium for Xcc T3 effector secretion has been defined. Here, we compared four minimal media (MME, MMX, XVM2, and XOM2) which are reported for T3 expression induction in Xanthomonas spp. and found that MME is most efficient for expression and secretion of Xcc T3 effectors. By optimization of carbon and nitrogen sources and pH value based on MME, we established XCM1 medium, which is about 3 times stronger than MME for Xcc T3 effectors secretion. We further optimized the concentration of phosphate, calcium, and magnesium in XCM1 and found that XCM1 with a lower concentration of magnesium (renamed as XCM2) is about 10 times as efficient as XCM1 (meanwhile, about 30 times stronger than MME). Thus, we established an inducing medium XCM2 which is preferred for T3 effector secretion in Xcc.
Asunto(s)
Receptores de Hormona Tiroidea , Western Blotting , Xanthomonas campestris , Glucuronidasa , TriyodotironinaRESUMEN
It is well known that the type III secretion system (T3SS) and type III (T3) effectors are essential for the pathogenicity of most bacterial phytopathogens and that the expression of T3SS and T3 effectors is suppressed in rich media but induced in minimal media and plants. To facilitate in-depth studies on T3SS and T3 effectors, it is crucial to establish a medium for T3 effector expression and secretion. Xanthomonas campestris pv. campestris (Xcc) is a model bacterium for studying plant-pathogen interactions. To date no medium for Xcc T3 effector secretion has been defined. Here, we compared four minimal media (MME, MMX, XVM2, and XOM2) which are reported for T3 expression induction in Xanthomonas spp. and found that MME is most efficient for expression and secretion of Xcc T3 effectors. By optimization of carbon and nitrogen sources and pH value based on MME, we established XCM1 medium, which is about 3 times stronger than MME for Xcc T3 effectors secretion. We further optimized the concentration of phosphate, calcium, and magnesium in XCM1 and found that XCM1 with a lower concentration of magnesium (renamed as XCM2) is about 10 times as efficient as XCM1 (meanwhile, about 30 times stronger than MME). Thus, we established an inducing medium XCM2 which is preferred for T3 effector secretion in Xcc.