Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 460
Filtrar
1.
J Agric Food Chem ; 72(36): 20101-20113, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39223077

RESUMEN

The green peach aphid, Myzus persicae, is a worldwide agricultural pest. Chlorpyrifos has been widely used to control M. persicae for decades, thus leading to a high resistance to chlorpyrifos. Recent studies have found that insect odorant binding proteins (OBPs) play essential roles in insecticide resistance. However, the potential resistance mechanism underlying the cross-link between aphid OBPs and chlorpyrifos remains unclear. In this study, two OBPs (MperOBP3 and MperOBP7) were found overexpressed in M. persicae chlorpyrifos-resistant strains (CRR) compared to chlorpyrifos-sensitive strains (CSS); furthermore, chlorpyrifos can significantly induce the expression of both OBPs. An in vitro binding assay indicated that both OBPs strongly bind with chlorpyrifos; an in vivo RNAi and toxicity bioassay confirmed silencing either of the two OBPs can increase the susceptibility of aphids to chlorpyrifos, suggesting that overexpression of MperOBP3 and MperOBP7 contributes to the development of resistance of M. persicae to chlorpyrifos. Our findings provide novel insights into insect OBPs-mediated resistance mechanisms.


Asunto(s)
Áfidos , Cloropirifos , Proteínas de Insectos , Resistencia a los Insecticidas , Insecticidas , Receptores Odorantes , Animales , Áfidos/genética , Áfidos/efectos de los fármacos , Áfidos/metabolismo , Cloropirifos/metabolismo , Cloropirifos/farmacología , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Receptores Odorantes/química , Resistencia a los Insecticidas/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/química , Insecticidas/farmacología , Insecticidas/metabolismo , Prunus persica/genética , Prunus persica/parasitología , Prunus persica/metabolismo , Prunus persica/química
2.
Anal Methods ; 16(34): 5793-5801, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39140306

RESUMEN

Raman spectroscopy is widely used for substance identification, providing molecular information from various components along with noise and instrument interference. Consequently, identifying components based on Raman spectra remains challenging. In this study, we collected Raman spectral data of 474 hazardous chemical substances using a portable Raman spectrometer, resulting in a dataset of 59 468 spectra. Our research employed a deep neural convolutional network based on the ResNet architecture, incorporating an attention mechanism called the SE module. By enhancing the weighting of certain spectral features, the performance of the model was significantly improved. We also investigated the classification predictive performance of the model under small-sample conditions, facilitating the addition of new hazardous chemical categories for future deployment on mobile devices. Additionally, we explored the features extracted by the convolutional neural network from Raman spectra, considering both Raman intensity and Raman shift aspects. We discovered that the neural network did not solely rely on intensity or shift for substance classification, but rather effectively combined both aspects. This research contributes to the advancement of Raman spectroscopy applications for hazardous chemical identification, particularly in scenarios with limited data availability. The findings shed light on the significance of spectral features in the model's decision-making process and have implications for broader applications of deep learning techniques in Raman spectroscopy-based substance identification.

3.
Zhonghua Nan Ke Xue ; 30(4): 342-354, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-39210422

RESUMEN

OBJECTIVE: To summarize and visualize the status quo, future hotspots and development trend of ED-related researches in China through bibliometric analysis. METHODS: We searched the Web of Science Core Collection (WOSCC) and the database of Chinese National Knowledge Infrastructure (CNKI) for ED-related studies published in China from January 1, 2010 to August 14, 2023. Using the CiteSpace and VOSviewer softwares, we bibliometrically analyzed and visualized the related journals, regions, institutions, authors, key words, co-citations and other indexes of the identified studies. RESULTS: A total of 2,465 ED-related studies were retrieved, with an increasing number of publications year by year, relatively more in the southeast region, with Sun Yat-sen University ranking the first in the number of published articles (n = 169), LIU Jihong (n = 73), WANG Tao (n = 71) and JIANG Rui (n = 49) as the top three prolific core authors. The first two Chinese journals with the most ED-related publications were Chinese Journal of Andrology (n = 320) and Journal of Sexual Medicine (n = 128), and the latter was also the mostly cited (n = 5 060). Keyword co-occurrence analysis showed that the highest-frequency Chinese terms included impotence, anxiety, andrology, expert consensus, experience of famous doctors, acupuncture, Earthworm protein (Chinese) and hypertension, and the English terms included erectile dysfunction, apoptosis, inflammation, fibrosis, risk and women. CONCLUSION: Recent years have wit-nessed a rapid development in ED-related studies in China, with the risk factors and patho-genic mechanisms of ED as hot topics. PDE5 inhibitors and adipose-derived stem cells for the treatment of ED have attracted long and continuous attention and will remain an important target of future research.


Asunto(s)
Bibliometría , Disfunción Eréctil , China , Humanos , Masculino
4.
J Econ Entomol ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093635

RESUMEN

Radioisotope irradiators (using cesium-137 or cobalt-60) are used as sources of ionizing radiation to control quarantine or phytosanitary insect pests in internationally traded fresh commodities and to sterilize insects used in sterile insect release programs. There are institutional initiatives to replace isotopic irradiators (producing γ-rays) with lower-energy X-ray machines due to concerns about radiological terrorism and increasingly stringent regulations on the movement of radioisotopes. Questions remain about whether the biological effects of low-energy X-rays are comparable to those of γ-rays since differences in energy levels and dose rates of X-rays may have different efficacies. We compared adult emergence, flight ability, and adult survival in the Oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritdae), after irradiation of third instar larvae with 100 kV or 5 MeV (5,000 kV) X-rays at 20 and 40 Gy in replicated studies. At 20 Gy, the adult emergence rate was significantly lower after irradiation with 100 kV compared to 5 MeV X-rays, suggesting higher efficacy at the lower energy level. In a follow-up study using 100 kV X-rays, applying 20 Gy using a slow dose rate (0.24 Gy min-1) resulted in significantly higher adult emergence than did a fast dose rate (3.3 Gy min-1), suggesting lower efficacy. Although our study suggests higher efficacy of low energy 100 kV X-rays, there is uncertainty in measuring the dose from an X-ray tube operating at 100 kV using an ionization chamber; we discuss how this uncertainty may change the interpretation of the results. Using a 100 kV X-ray irradiator to develop a phytosanitary treatment may underestimate the dose required for insect control using commercial high-energy γ-ray or X-ray systems.

5.
Anal Chem ; 96(31): 12883-12891, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39056433

RESUMEN

Qualitative and quantitative analysis of Raman spectroscopy is a widely used nondestructive analytical technique in many fields. It utilizes the Raman scattering effect of lasers to obtain molecular vibration information on samples. By comparison with the Raman spectra of standard substances, qualitative and quantitative analyses can be achieved on unknown samples. However, current Raman spectroscopy analysis algorithms still have many drawbacks. They struggled to handle quantitative analysis between different instruments. Their prediction accuracy for concentration is generally low, with poor robustness. Therefore, this study addresses these deficiencies by designing the cross instrument-sparse Bayesian learning (CI-SBL) Raman spectroscopy analysis algorithm. CI-SBL can facilitate spectroscopic analysis between different instruments through the cross instrument module. CI-SBL converts data from portable instruments into data from scientific instruments, with high similarity between the converted spectrum and the spectrum from the scientific instruments reaching 98.6%. The similarity between the raw portable instrument spectrum and the scientific instrument spectrum is often lower than 90%. The cross instrument effect of the CI-SBL is remarkable. Moreover, CI-SBL employs sparse Bayesian learning (SBL) as the core module for analysis. Through multiple iterations, the SBL algorithm effectively identified various components within mixtures. In experiments, CI-SBL can achieve a qualitative accuracy of 100% for the majority of binary and multicomponent mixtures. On the other hand, the previous Raman spectroscopy analysis algorithms predominantly yield a qualitative accuracy below 80% for the same data. Additionally, CI-SBL incorporates a quantitative module to calculate the concentration of each component within the mixed samples. In the experiment, the quantification error for all substances was below 3%, with the majority of the substances exhibiting an error of approximately 1%. These experimental results illustrate that CI-SBL significantly enhances the accuracy of qualitative judgment of mixture spectra and the prediction of mixture concentrations compared with previous Raman spectroscopy analysis algorithms. Furthermore, the cross instrument module of CI-SBL allows for a flexible handling of data acquired from different instruments.

6.
J Agric Food Chem ; 72(30): 16661-16673, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39021284

RESUMEN

Rab GTPase is critical for autophagy processes and is implicated in insect immunity against viruses. In this study, we aimed to investigate the role of FoRabs in the autophagic regulation of antiviral defense against tomato spotted wilt orthotospovirus (TSWV) in Frankliniella occidentalis. Transcriptome analysis revealed the downregulation of FoRabs in viruliferous nymph and adults of F. occidentalis in response to TSWV infection. Manipulation of autophagy levels with 3-MA and Rapa treatments resulted in a 5- to 15-fold increase and a 38-64% decrease in viral titers, respectively. Additionally, interference with FoRab10 in nymphs and FoRab29 in adults led to a 20-90% downregulation of autophagy-related genes, a decrease in ATG8-II (an autophagy marker protein), and an increase in the TSWV titers by 1.5- to 2.5-fold and 1.3- to 2.0-fold, respectively. In addition, the leaf disk and the living plant methods revealed increased transmission rates of 20.8-41.6 and 68.3-88.3%, respectively. In conclusion, FoRab10 and FoRab29 play a role in the autophagic regulation of the antiviral defense in F. occidentalis nymphs and adults against TSWV, respectively. These findings offer insights into the intricate immune mechanisms functional in F. occidentalis against TSWV, suggesting potential targeted strategies for F. occidentalis and TSWV management.


Asunto(s)
Autofagia , Resistencia a la Enfermedad , Proteínas de Insectos , Enfermedades de las Plantas , Thysanoptera , Tospovirus , Animales , Tospovirus/fisiología , Tospovirus/inmunología , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Thysanoptera/virología , Thysanoptera/inmunología , Thysanoptera/genética , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/inmunología , Proteínas de Insectos/genética , Proteínas de Insectos/inmunología , Proteínas de Insectos/metabolismo , Solanum lycopersicum/virología , Solanum lycopersicum/inmunología , Solanum lycopersicum/genética , Ninfa/inmunología , Ninfa/crecimiento & desarrollo , Ninfa/virología , Ninfa/genética , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/inmunología , Proteínas de Unión al GTP rab/metabolismo
7.
Am J Med Sci ; 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033818

RESUMEN

BACKGROUND: The purpose was to explore the correlation between refeeding hypophosphatemia and delirium and analyze the related factors in critically ill patients. METHODS: We conducted a retrospective review of critically ill patients admitted to Nanjing Drum Tower Hospital between September 2019 and March 2021. The patients were divided into delirium and nondelirium groups. Demographic data, underlying diseases, laboratory findings, comorbidities, nutritional intake and overall prognosis were collected and analyzed. RESULTS: In total, 162 patients were included and divided into delirium (n=54) and nondelirium (n=108) groups. Serum phosphorus levels in the two groups decreased significantly in the first three days (P1, P2, P3) after nutrient intake compared with baseline before nutrient intake (Ppre). P1 and P2 were significantly lower in the delirium group compared to the nondelirium group. The maximum blood phosphorus reduction (Pmax) in the first three days after nutrient intake was significantly higher in the delirium group than in the nondelirium group. The time of Pmax in the delirium group was on the first day after nutrient intake. Multivariable logistic regression analysis identified starting route of nutrition and P1< 0.845 mmol/L as the independent predictors of delirium development in critically ill patients. CONCLUSION: The incidence of delirium in critically ill patients is high and associated with refeeding hypophosphatemia. Delirium may occur with serum phosphorus levels less than 0.845 mmol/L on the first day.

8.
Reprod Biol ; 24(3): 100911, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38861846

RESUMEN

This study aimed to investigate the pro-inflammatory and anti-inflammatory cytokines status in the peripheral blood of uRM patients. The plasma pro-inflammatory (IFN-γ, IL-6, IL-1ß, and TNF-α) and anti-inflammatory (TGF-ß1, IL-10, and IL-4) cytokines of 25 patients with uRM were compared to 33 women with a successful pregnancy. It was concluded that patients with uRM have an excess pro-inflammatory cytokines status.


Asunto(s)
Aborto Habitual , Citocinas , Humanos , Femenino , Citocinas/sangre , Aborto Habitual/sangre , Aborto Habitual/inmunología , Adulto , Embarazo , Inflamación/sangre
9.
Cogn Neurodyn ; 18(3): 1021-1032, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38826663

RESUMEN

Two coordinated dynamic properties (adaptation and sensitization) are observed in retinal ganglion cells (RGCs) under the contrast stimulation. During sustained high-contrast period, adaptation decreases RGCs' responses while sensitization increases RGCs' responses. In mouse retina, adaptation and sensitization respectively show OFF- and ON-pathway-dominance. However, the mechanisms which drive the differentiation between adaptation and sensitization remain unclear. In the present study, multi-electrode recordings were conducted on isolated mouse retina under full-field contrast stimulation. Dynamic property was quantified based on the trend of RGC's firing rate during high-contrast period, light sensitivity was estimated by linear-nonlinear analysis and coding ability was estimated through stimulus reconstruction algorism. γ-Aminobutyric acid (GABA) receptors were pharmacologically blocked to explore the relation between RGCs' dynamic property and the activity of GABA receptors. It was found that GABAA and GABAC receptors respectively mediated the adaptation and sensitization processes in RGCs' responses. RGCs' dynamic property changes occurred after the blockage of GABA receptors were related to the modulation of the cells' light sensitivity. Further, the blockage of GABAA (GABAC) receptor significantly decreased RGCs' overall coding ability and eliminated the functional benefits of adaptation (sensitization). Our work suggests that the dynamic property of individual RGC is related to the balance between its GABAA-receptor-mediated inputs and GABAC-receptor-mediated inputs. Blockage of GABA receptors breaks the balance of retinal circuitry for signal processing, and down-regulates the visual information coding ability. Supplementary Information: The online version contains supplementary material available at 10.1007/s11571-023-09950-2.

10.
Pestic Biochem Physiol ; 202: 105957, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38879339

RESUMEN

Sitobion miscanthi is a destructive wheat pest responsible for significant wheat yield losses. Pirimicarb, one of the most important representatives of N, N-dimethylcarbamate insecticides, is widely used to control wheat aphids. In present work, heterozygous S431F mutation of acetylcholinesterase 1 (AChE1) was identified and verified in three pirimicarb-resistant S. miscanthi populations (two field populations (HA and HS, >955.8-fold) and one lab-selected population (PirR, 486.1-fold)), which has not been reported in S. miscanthi yet. The molecular docking results revealed that AChE1 containing the S431F mutation of S. miscanthi (SmAChE1S431F) showed higher free binding energy to three insecticides (pirimicarb, omethoate, and methomyl) than wild-type AChE1 of S. miscanthi (SmAChE1). Enzyme kinetic and inhibition experiments showed that the recombinant SmAChE1S431F was more insensitive to pirimicarb and omethoate than the recombinant SmAChE1. Furthermore, two overexpression P450 genes (CYP6K1 and CYP6A14) associated with pirimicarb resistance of S. miscanthi were verified by RNAi. These results suggested both target alteration and enhanced metabolism contributed to high pirimicarb resistance of S. miscanthi in the field and laboratory. These findings lay a foundation for further elucidating the mechanism of pirimicarb resistance in S. miscanthi, and have important implications for the resistance management of S. miscanthi control.


Asunto(s)
Acetilcolinesterasa , Áfidos , Carbamatos , Sistema Enzimático del Citocromo P-450 , Resistencia a los Insecticidas , Insecticidas , Mutación , Acetilcolinesterasa/genética , Acetilcolinesterasa/metabolismo , Animales , Resistencia a los Insecticidas/genética , Áfidos/genética , Áfidos/efectos de los fármacos , Insecticidas/farmacología , Carbamatos/farmacología , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Pirimidinas/farmacología , Simulación del Acoplamiento Molecular , Triticum/genética , Dimetoato/análogos & derivados
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124427, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38754205

RESUMEN

The identification of mixed solutions is a challenging and important subject in chemical analysis. In this paper, we propose a novel workflow that enables rapid qualitative and quantitative detection of mixed solutions. We use a methanol-ethanol mixed solution as an example to demonstrate the superiority of this workflow. The workflow includes the following steps: (1) converting Raman spectra into Raman images through CWT; (2) using MobileNetV3 as the backbone network, improved multi-label and multi-channel synchronization enables simultaneous prediction of multiple mixture concentrations; and (3) using transfer learning and multi-stage training strategies for training to achieve accurate quantitative analysis. We compare six traditional machine learning algorithms and two deep learning models to evaluate the performance of our new method. The experimental results show that our model has achieved good prediction results when predicting the concentration of methanol and ethanol, and the coefficient of determination R2 is greater than 0.999. At different concentrations, both MAPE and RSD outperform other models, which demonstrates that our workflow has outstanding analytical capabilities. Importantly, we have solved the problem that current quantitative analysis algorithms for Raman spectroscopy are almost unable to accurately predict the concentration of multiple substances simultaneously. In conclusion, it is foreseeable that this non-destructive, automated, and highly accurate workflow can further advance Raman spectroscopy.

12.
Chem Commun (Camb) ; 60(46): 5964-5967, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38767204

RESUMEN

A new strategy for N-borylenamines by reaction of 2-alkynyl benzyl azides with B(C6F5)3 was developed. This novel 1,3-carboboration reaction proceeded via a 5-exo-dig cyclization/formal 1,1-carboboration/B(C6F5)2 shift reaction sequence. Additionally, N-borylenamines can undergo hetero Diels-Alder (HDA) reactions with a variety of dienophiles. Our results are an attractive complement to HDA reactions.

13.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2076-2087, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38812224

RESUMEN

Raphani Semen, with both edible and medicinal values, is a typical Chinese herbal medicine with different effects before and after processing. The raw helps ascending and the cooked helps descending. This paper comprehensively summarizes the differences in chemical constituents and pharmacological effects between raw and processed Raphani Semen that are reported in recent years. Based on the principle of quality markers(Q-markers) of traditional Chinese medicines, the chemical constituent sources, chemical constituent detection techniques, and correlation between bidirectional regulatory efficacy and chemical constituents are compared between raw and processed Raphani Semen. The results suggest that sulforaphene and glucoraphanin could be used as candidate Q-markers of raw and processed Raphani Semen, respectively. This review is expected to provide a reference for further research on the processing, new drug development, and improvement of safety and effectiveness of Raphani Semen in clinical application.


Asunto(s)
Medicamentos Herbarios Chinos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisis , Control de Calidad , Humanos , Biomarcadores/análisis
14.
Mikrochim Acta ; 191(6): 308, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714541

RESUMEN

A convenient self-assembly method is proposed for synthesis of 3D Au/MOF-808 (Zr) composite nanostructures with a cerium metal-organic framework loaded with gold nanoparticles. We combine adsorption properties of MOF materials with surface plasmon resonance of noble metals to construct hotspot-dense 3D Au/MOF-808 (Zr) SERS substrates, by using a two-step method of solvothermal and reduction reactions. The results show that optimal SERS substrates are obtained from a volume ratio of gold nanoparticles to MOF-808 (Zr) solution of 4:1 and a self-assembly time of 2 h. Rhodamine 6G (R6G) is used as a molecular probe to characterize and analyze SERS properties of substrates of 3D Au/MOF-808 (Zr) prepared under the optimal process conditions, where the substrates are capable to detect R6G concentrations down to 10-10 M with a relative standard deviation of 8.81%. Finally, we applied the SERS substrates of 3D Au/MOF-808 (Zr) to the detection of pesticide thiram, and establish a quantitative determination method. 3D Au/MOF-808 (Zr) provides a sensitive detection of thiram in lake water by SERS with a detection limit of 1.49 × 10-9 M. Application tests show that a SERS enhancement factor of the MOF-based SERS substrates for the detection of thiram can be significantly increased to 5.91 × 105. Thus, the above results indicate that such substrate has high sensitivity, good adsorption, homogeneity, and reproducibility, which can be extended for sensitive detection of pesticide residues in food and environment.

15.
Phys Chem Chem Phys ; 26(22): 16287-16295, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38804814

RESUMEN

A phenomenon known as plasmon resonance constitutes a unique optical effect that can induce an enhancement in localized electromagnetic fields, resulting in a substantial increase in the electromagnetic field intensity surrounding metallic nanostructures. In this work, the coupling effect of excitation of surface plasmon polaritons and local surface plasmons in nanoparticles is deeply studied under the background of nanoparticles/one-dimension grating composite structures through grating matching. By employing finite-difference time-domain simulations as our methodological approach, we discern gratings with a periodicity of 1.5 µm support surface plasmon bound states between the gratings. Furthermore, the modulation of SPs along the vertical sidewalls of the grating due to standing wave effects exhibits oscillatory behavior with varying grating heights. Experimental results obtained from the nanoparticle/grating composite SERS substrate validate theoretical predictions, demonstrating higher enhanced Raman signals at 633 nm compared to 532 nm. Remarkably, this structure exhibits good performance, with R6G detection sensitivity down to concentrations as low as 10-10 M and mapping achieving a relative standard deviation of 7.79%, underscoring its uniformity and capability of electromagnetic field enhancement.

16.
Talanta ; 275: 126138, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38677164

RESUMEN

Raman spectroscopy is a general and non-destructive detection technique that can obtain detailed information of the chemical structure of materials. In the past, when using chemometric algorithms to analyze the Raman spectra of mixtures, the challenges of complex spectral overlap and noise often limited the accurate identification of components. The emergence of deep learning has introduced a novel approach to qualitative analysis of mixed Raman spectra. In this paper, we propose a deep learning-based Raman spectroscopy qualitative analysis algorithm (RST) by borrowing the ideas of convolutional neural network and Transformer. By transforming the Raman spectrum into 64 word vectors, the contribution weights of each word vector to the components are obtained. For the 75 spectral data used for validation, the positive identification rate can reach 100.00 %, the recall rate can reach 99.3 %, the average identification score can reach 9.51, and it is applicable to the fields of Raman and surface-enhanced Raman spectroscopy. Furthermore, compared with traditional CNN models, RST has excellent accuracy and robustness in identifying components in complex mixtures. The model's interpretability has been enhanced, aiding in a deeper understanding of spectroscopic learning patterns for future analysis of more complex mixtures.

17.
Pestic Biochem Physiol ; 201: 105891, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685253

RESUMEN

The fall armyworm (Spodoptera frugiperda) was found to have invaded China in December 2018, and in just one year, crops in 26 provinces were heavily affected. Currently, the most effective method for emergency control of fulminant pests is to use of chemical pesticides. Recently, most fall armyworm populations in China were begining to exhibite low level resistance to chlorantraniliprole. At present, it is not possible to sensitively reflect the low level resistance of S. frugiperda by detecting target mutation and detoxification enzyme activity. In this study we found that 12 successive generations of screening with chlorantraniliprole caused S. frugiperda to develop low level resistance to this insecticide, and this phenotype was not attribute to genetic mutations in S. frugiperda, but rather to a marked increase in the relative amount of the symbiotic bacteria Sphingomonas. Using FISH and qPCR assays, we determined the amount of Sphingomonas in the gut of S. frugiperda and found Sphingomonas accumulation to be highest in the 3rd-instar larvae. Additionally, Sphingomonas was observed to provide a protective effect to against chlorantraniliprole stress to S. frugiperda. With the increase of the resistance to chlorantraniliprole, the abundance of bacteria also increased, we propose Sphingomonas monitoring could be adapted into an early warning index for the development of chlorantraniliprole resistance in S. frugiperda populations, such that timely measures can be taken to delay or prevent the widespread propagation of resistance to this highly useful agricultural chemical in S. frugiperda field populations.


Asunto(s)
Insecticidas , Larva , Sphingomonas , Spodoptera , ortoaminobenzoatos , Animales , Spodoptera/efectos de los fármacos , Spodoptera/microbiología , ortoaminobenzoatos/farmacología , Insecticidas/farmacología , Insecticidas/toxicidad , Larva/efectos de los fármacos , Sphingomonas/efectos de los fármacos , Sphingomonas/genética , Resistencia a los Insecticidas/genética
18.
Int J Biol Macromol ; 266(Pt 1): 130941, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38521305

RESUMEN

Recent studies revealed that insect chemosensory proteins (CSPs) both play essential roles in insect olfaction and insect resistance. However, functional evidence supporting the crosslink between CSP and insecticide resistance remains unexplored. In the present study, 22 SfruCSP transcripts were identified from the fall armyworm (FAW) and SfruCSP1 and SfruCSP2 are enriched in the larval cuticle and could be induced by multiple insecticides. Both SfruCSP1 and SfruCSP2 are highly expressed in the larval inner endocuticle and outer epicuticle, and these two proteins exhibited high binding affinities with three insecticides (chlorfenapyr, chlorpyrifos and indoxacarb). The knockdown of SfruCSP1 and SfruCSP2 increased the susceptibility of FAW larvae to the above three insecticides, and significantly increased the penetration ratios of these insecticides. Our in vitro and in vivo evidence suggests that SfruCSP1 and SfruCSP2 are insecticide binding proteins and confer FAW larval resistance to chlorfenapyr, chlorpyrifos and indoxacarb by an insecticide sequestration mechanism. The study should aid in the exploration of larval cuticle-enriched CSPs for insect resistance management.


Asunto(s)
Proteínas de Insectos , Resistencia a los Insecticidas , Insecticidas , Larva , Oxazinas , Spodoptera , Animales , Spodoptera/efectos de los fármacos , Spodoptera/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Larva/efectos de los fármacos , Cloropirifos/farmacología
19.
Pest Manag Sci ; 80(8): 3893-3900, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38511881

RESUMEN

BACKGROUND: Afidopyropen is a novel insecticide with high selectivity between sucking insects such as the peach aphids Myzus persicae and natural enemies like the seven-spotted lady beetle Coccinella septempunctata. However, the mechanisms of selective action for afidopyropen remain unknown. RESULTS: The LC50 values of afidopyropen to the 1st-4th instar larvae and adult C. septempunctata were 372- to more than 7267-fold higher than that to adult M. persicae. Though the activity of cytochrome P450s in M. persicae was 6.1- to 7.5-fold higher than that in C. septempunctata, the latter has much higher activities of carboxylesterase (CarEs) and glutathione S-transferases (GSTs), and the crude enzyme of C. septempunctata and M. persicae showed similar metabolism efficiency to afidopyropen. Molecular docking results demonstrated that afdopyropen showed higher binding affinity to the vanilloid-type transient receptor potential (TRPV) channel of M. persicae (-9.1 kcal/mol) than to that of C. septempunctata (-8.2 kcal/mol). And the EC50 value of afdopyropen to the TRPV channel of C. septempunctata (41 360 nM) was 19 885-fold higher than that in M. persicae (2.08 nM). CONCLUSIONS: Our results demonstrated that the significantly different sensitivity of M. persicae and C. septempunctata TRPV channel to afidopyropen play a key role in the high selectivity of afidopyropen. These findings provide new insights into the selective mechanisms of afidopyropen against insect pests and natural enemies as well as the theory support for coordinated application of chemical control and biological control. © 2024 Society of Chemical Industry.


Asunto(s)
Áfidos , Escarabajos , Insecticidas , Larva , Simulación del Acoplamiento Molecular , Animales , Áfidos/metabolismo , Áfidos/efectos de los fármacos , Áfidos/enzimología , Insecticidas/farmacología , Larva/crecimiento & desarrollo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/química , Sistema Enzimático del Citocromo P-450/metabolismo
20.
Sci Total Environ ; 926: 171984, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38547983

RESUMEN

Mesoporous silica nanoparticles (MSNs) are efficient carriers of drugs, and are promising in developing novel pesticide formulations. The cotton aphids Aphis gossypii Glover is a world devastating insect pest. It has evolved high level resistance to various insecticides thus resulted in the application of higher doses of insecticides, which raised environmental risk. In this study, the MSNs based pesticide/antibiotic delivery system was constructed for co-delivery of ampicillin (Amp) and imidacloprid (IMI). The IMI@Amp@MSNs complexes have improved toxicity against cotton aphids, and reduced acute toxicity to zebrafish. From the 16S rDNA sequencing results, Amp@MSNs, prepared by loading ampicillin to the mesoporous of MSNs, greatly disturbed the gut community of cotton aphids. Then, the relative expression of at least 25 cytochrome P450 genes of A. gossypii was significantly suppressed, including CYP6CY19 and CYP6CY22, which were found to be associated with imidacloprid resistance by RNAi. The bioassay results indicated that the synergy ratio of ampicillin to imidacloprid was 1.6, while Amp@MSNs improved the toxicity of imidacloprid by 2.4-fold. In addition, IMI@Amp@MSNs significantly improved the penetration of imidacloprid, and contributed to the amount of imidacloprid delivered to A. gossypii increased 1.4-fold. Thus, through inhibiting the relative expression of cytochrome P450 genes and improving penetration of imidacloprid, the toxicity of IMI@Amp@MSNs was 6.0-fold higher than that of imidacloprid. The greenhouse experiments further demonstrated the enhanced insecticidal activity of IMI@Amp@MSNs to A. gossypii. Meanwhile, the LC50 of IMI@Amp@MSNs to zebrafish was 3.9-fold higher than that of IMI, and the EC50 for malformation was 2.8-fold higher than IMI, respectively, which indicated that the IMI@Amp@MSNs complexes significantly reduced the environmental risk of imidacloprid. These findings encouraged the development of pesticide/antibiotic co-delivery nanoparticles, which would benefit pesticide reduction and environmental safety.


Asunto(s)
Áfidos , Insecticidas , Nanosferas , Animales , Insecticidas/metabolismo , Pez Cebra , Resistencia a los Insecticidas/genética , Neonicotinoides/metabolismo , Nitrocompuestos/toxicidad , Nitrocompuestos/metabolismo , Áfidos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Ampicilina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA