Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39274921

RESUMEN

Polyimide (PI) refers to a type of high-performance polymer containing imide rings in the main chain, which has been widely used in fields of aerospace, microelectronic and photonic devices, gas separation technology, and so on. However, traditional aromatic PIs are, in general, the inefficient fluorescence or even no fluorescence, due to the strong inter- and intramolecular charge transfer (CT) interactions causing unavoidable fluorescence quenching, which greatly restricts their applications as light-emitting functional layers in the fabrication of organic light-emitting diode (OLED) devices. As such, the development of fluorescent PIs with high fluorescence quantum efficiency for their application fields in the OLED is an important research direction in the near future. In this review, we provide a comprehensive overview of fluorescent PIs as well as the methods to improve the fluorescence quantum efficiency of PIs. It is anticipated that this review will serve as a valuable reference and offer guidance for the design and development of fluorescent PIs with high fluorescence quantum efficiency, ultimately fostering further progress in OLED research.

2.
Molecules ; 28(24)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38138477

RESUMEN

A tert-butyldiphenylsilyl-containing polyimide (PI-OSi) has been established as a colorimetric and ratiometric chemosensor for rapid detecting fluoride ions (F-). The UV-vis absorbance ratio value (A322/A288) of PI-OSi in a DMF solution displays a wide linear range change to F- concentrations with a detection limit (DL) value of 2.13 µM. Additionally, adding incremental amounts of F- to a DMF solution of PI-OSi shows an immediate color change to yellow and finally to green from colorless. More interestingly, the resulting PI-OSi plus F- system (PI-OSi·F) could detect trace water in DMF. The A292/A322 value of PI-OSi·F almost linearly increases with low water content, which suggests convenient quantitative sensing of trace water content in DMF. The DL value of PI-OSi·F for sensing water in DMF is determined to be 0.00149% (v/v). The solution color of PI-OSi·F returns to colorless when the water content increases, indicating that PI-OSi·F can conveniently estimate water content in DMF by naked-eye detection. The detection mechanisms confirmed by an 1H NMR study and a DFT calculation involve a F--induced desilylation reaction of PI-OSi to form phenolate anion followed by protonation with trace water. Finally, PI-OSi film was fabricated for the colorimetric detection of F- and water in CH3CN.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA