Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.679
Filtrar
1.
J Environ Sci (China) ; 148: 221-229, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095159

RESUMEN

Polychlorinated naphthalenes (PCNs) are detrimental to human health and the environment. With the commercial production of PCNs banned, unintentional releases have emerged as a significant environmental source. However, relevant information is still scarce. In this study, provincial emissions for eight PCNs homologues from 37 sources in the Chinese mainland during the period of 1960-2019 were estimated based on a source-specific and time-varying emission factor database. The results showed that the total PCNs emissions in 2019 reached 757.0 kg with Hebei ranked at the top among all the provinces and iron & steel industry as the biggest source. Low-chlorinated PCNs comprised 90% of emissions by mass, while highly chlorinated PCNs dominated in terms of toxicity, highlighting divergent priorities for mitigating emissions and safeguarding human health. The emissions showed an overall upward trend from 1960 to 2019 driven by emission increase from iron & steel industry in terms of source, and from North China and East China in terms of geographic area. Per-capita emissions followed an inverted U-shaped environmental Kuznets curve while emission intensities decreased with increasing per-capita Gross Domestic Product (GDP) following a nearly linear pattern when log-transformed.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Naftalenos , China , Naftalenos/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire/estadística & datos numéricos
2.
Front Pharmacol ; 15: 1404687, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39286635

RESUMEN

Tumor-associated macrophages (TAMs), fundamental constituents of the tumor microenvironment (TME), significantly influence cancer development, primarily by promoting epithelial-mesenchymal transition (EMT). EMT endows cancer cells with increased motility, invasiveness, and resistance to therapies, marking a pivotal juncture in cancer progression. The review begins with a detailed exposition on the origins of TAMs and their functional heterogeneity, providing a foundational understanding of TAM characteristics. Next, it delves into the specific molecular mechanisms through which TAMs induce EMT, including cytokines, chemokines and stromal cross-talking. Following this, the review explores TAM-induced EMT features in select cancer types with notable EMT characteristics, highlighting recent insights and the impact of TAMs on cancer progression. Finally, the review concludes with a discussion of potential therapeutic targets and strategies aimed at mitigating TAM infiltration and disrupting the EMT signaling network, thereby underscoring the potential of emerging treatments to combat TAM-mediated EMT in cancer. This comprehensive analysis reaffirms the necessity for continued exploration into TAMs' regulatory roles within cancer biology to refine therapeutic approaches and improve patient outcomes.

3.
J Hazard Mater ; 480: 135859, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39288525

RESUMEN

The characteristics and ecological risks of heavy metal pollution in urban soils were comprehensively investigated, focusing on 224 typical industries undergoing redevelopment in Shanghai. The PMF (Positive Matrix Factorization) model was used to analyze the sources of soil heavy metals, while the HRA (Health Risk Assessment) model with Monte Carlo simulation assessed health risks to humans. Health risks under different pollution sources were explored, and priority control factors were identified. Results showed that, levels of most heavy metals exceeded Shanghai soil background values. Surface soil concentrations of Cd, Hg, Pb, Cu, Zn, and Ni exceeded the background values of Shanghai's soil to varying degrees, at 5.08, 5.40, 1.81, 1.95, 1.43, and 3.53 times, respectively. Four sources were identified: natural sources (22.23 %), mixed sources from the chemical industry and traffic (26.25 %), metal product sources (36.38 %), and pollution sources from electrical manufacturing and the integrated circuit industry (15.14 %). The HRA model indicated a tolerable carcinogenic risk for adults and children, with negligible non-carcinogenic risk. Potential risk was higher for children than for adult females, and higher for adult females than for adult males, with oral ingestion as the primary exposure pathway. Metal product sources and Ni were identified as primary control factors, suggesting intensified regional control. This study provides theoretical support for urban pollution prevention and control.

4.
Talanta ; 281: 126893, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39288586

RESUMEN

Cancer antigen 125 (CA125) is the gold standard biomarker for clinical diagnosis of ovarian cancer, with a threshold value of 35 U/mL in serum. In this paper, a disposable ultrasensitive immunosensor based on Ti3C2Tx-MXene/amino-functionalized carbon nanotube (NH2-CNT) modified screen-printed carbon electrode (SPCE) was constructed for the detection of the ovarian cancer antigen CA125. By optimizing the mass ratio of Ti3C2Tx to NH2-CNT, Ti3C2Tx/NH2-CNT composite with excellent electrochemical properties was prepared, which is beneficial for amplifying the initial electrochemical signal. The positively charged NH2-CNT effectively alleviated the stacking problem of Ti3C2Tx, and its amino group also facilitated the covalent immobilization of the capture antibody. Meanwhile, chitosan (CS) with excellent film-forming ability was also used to successfully enhance the adsorption of electrode material, thus improving the stability of the sensor. In addition, CS could further enhance the current signal. The prepared immunosensor exhibited excellent performance in CA125 detection with a wide linear range from 1 mU/mL to 500 U/mL, and good selectivity, reproducibility and lomg-term stability. Furthermore, the immunosensor showed satisfactory results for the detection of CA125 in clinical serum samples, which is promising for the clinical screening, early diagnosis and prognostic examination of ovarian cancer.

5.
Molecules ; 29(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39274848

RESUMEN

Developing multifunctional flexible composites with high-performance electromagnetic interference (EMI) shielding, thermal management, and sensing capacity is urgently required but challenging for next-generation smart electronic devices. Herein, novel nacre-like aramid nanofibers (ANFs)-based composite films with an anisotropic layered microstructure were prepared via vacuum-assisted filtration and hot-pressing. The formed 3D conductive skeleton enabled fast electron and phonon transport pathways in the composite films. As a result, the composite films showed a high electrical conductivity of 71.53 S/cm and an outstanding thermal conductivity of 6.4 W/m·K when the mass ratio of ANFs to MXene/AgNWs was 10:8. The excellent electrical properties and multi-layered structure endowed the composite films with superior EMI shielding performance and remarkable Joule heating performance, with a surface temperature of 78.3 °C at a voltage of 2.5 V. Additionally, it was found that the composite films also exhibited excellent mechanical properties and outstanding flame resistance. Moreover, the composite films could be further designed as strain sensors, which show great promise in monitoring real-time signals for human motion. These satisfactory results may open up a new opportunity for EMI shielding, thermal management, and sensing applications in wearable electronic devices.

6.
Biochim Biophys Acta Mol Basis Dis ; : 167515, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39278512

RESUMEN

Pancreatic cancer is a highly malignant tumor characterized by high mortality and low survival rates. The mitotic interactor and substrate of Plk1 (MISP) is a cancer-associated protein that regulates mitotic spindle localization and is highly expressed in several malignant tumors, contributing to tumor development. However, the function and regulatory mechanisms of MISP in pancreatic cancer remain unclear. In this study, we analyzed RNA sequencing data related to pancreatic cancer from the TCGA and GEO databases, identifying MISP as a potential prognostic marker for the disease. MISP was significantly upregulated in pancreatic cancer cells and tissues compared to normal pancreatic cells and tissues. Notably, in pancreatic cancer cells, high MISP protein expression promoted cell proliferation and growth. Mechanistically, the upregulation of MISP facilitated the nuclear accumulation of ß-catenin, thereby activating the Wnt/ß-catenin signaling pathway and promoting pancreatic cancer growth. In search of effective inhibitors of MISP expression, we screened an FDA-approved drug library and identified Fisetin as a potential suppressor of MISP expression. Fisetin was found to downregulate the transcription factor MYB, thereby reducing MISP expression. Further experiments demonstrated that Fisetin effectively inhibited the in vitro and in vivo growth of pancreatic cancer by suppressing the MISP/Wnt/ß-catenin signaling axis. In summary, our research has identified MISP as a novel therapeutic target in pancreatic cancer and uncovered its associated regulatory mechanisms.

7.
Environ Pollut ; : 124970, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39284404

RESUMEN

Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) are notorious persistent organic pollutants (POPs) with proven toxicity to human and ecosystems. This review critically evaluates existing research, emphasizing knowledge gaps regarding PCDD/F emissions, environmental behavior, human exposure, and associated risks in China. The current emission inventory of PCDD/Fs in China remains highly uncertain, both in terms of total emissions and emission trends. Moreover, existing monitoring data primarily focus on areas near pollution sources, limiting comprehensive understanding of the overall spatiotemporal characteristics of PCDD/F pollution. To address this, we propose a novel approach that integrates the Multi-media Urban Mode (MUM) model with an atmospheric chemical transport model that includes a dual adsorption model to capture gas-particle partitioning of PCDD/Fs in the atmosphere. This coupled model can simulate the transport and fate of PCDD/Fs in multi-media environments with high spatiotemporal resolution, facilitating a nuanced understanding of the impacts of emissions, climate, urbanization and other factors on PCDD/F pollution. Additionally, dietary ingestion, particularly from animal-derived foods, is identified as the predominant source (up to 98%) of human exposure to PCDD/Fs. While the changes in dietary structure, population distribution, and age structure can influence human exposure to PCDD/Fs, their impacts have not yet been quantified. The proposed model lays the foundation for a systematic assessment of health risks from PCDD/F exposure through various pathways by further incorporating a food chain model. Overall, this review offers a comprehensive strategy for assessing PCDD/F pollution, encompassing the entire continuum from emissions to environmental impacts.

8.
Sci Rep ; 14(1): 21605, 2024 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285256

RESUMEN

This study delves into the correlation between the triglyceride glucose-body mass index (TyG-BMI) index upon hospital admission and clinical outcomes among this patient population. We investigated the association between TyG-BMI at hospital admission and clinical outcomes in this patient group, and analyzed data from the Medical Information Mart for Intensive Care IV database, identifying acute pancreatitis (AP) patients admitted to ICUs and stratifying them by TyG-BMI quartiles. We assessed the relationship between TyG-BMI and mortality (both in-hospital and ICU) using Cox proportional hazards regression and restricted cubic splines. The cohort included 419 patients, average age 56.34 ± 16.62 years, with a majority being male (61.58%). Hospital and ICU mortality rates were 11.93% and 7.16%, respectively. Higher TyG-BMI was positively correlated with increased all-cause mortality. Patients in the highest TyG-BMI quartile had significantly greater risks of in-hospital and ICU mortality. An S-shaped curve in the spline analysis indicated a threshold effect at a TyG-BMI of 243 for increased in-hospital mortality risk. TyG-BMI is a reliable predictor of both in-hospital and ICU mortality in severely ill AP patients, suggesting its utility in enhancing risk assessment and guiding clinical interventions for this vulnerable population.


Asunto(s)
Glucemia , Índice de Masa Corporal , Enfermedad Crítica , Mortalidad Hospitalaria , Unidades de Cuidados Intensivos , Pancreatitis , Triglicéridos , Humanos , Masculino , Femenino , Pancreatitis/mortalidad , Pancreatitis/sangre , Persona de Mediana Edad , Enfermedad Crítica/mortalidad , Triglicéridos/sangre , Anciano , Glucemia/análisis , Glucemia/metabolismo , Adulto , Modelos de Riesgos Proporcionales
9.
Elife ; 132024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39259595

RESUMEN

Carnivores play key roles in maintaining ecosystem structure and function as well as ecological processes. Understanding how sympatric species coexist in natural ecosystems is a central research topic in community ecology and biodiversity conservation. In this study, we explored intra- and interspecific niche partitioning along spatial, temporal, and dietary niche partitioning between apex carnivores (wolf Canis lupus, snow leopard Panthera uncia, Eurasian lynx Lynx lynx) and mesocarnivores (Pallas's cat Otocolobus manul, red fox Vulpes vulpes, Tibetan fox Vulpes ferrilata) in Qilian Mountain National Park, China, using camera trapping data and DNA metabarcoding sequencing data. Our study showed that apex carnivore species had more overlap temporally (coefficients of interspecific overlap ranging from 0.661 to 0.900) or trophically (Pianka's index ranging from 0.458 to 0.892), mesocarnivore species had high dietary overlap with each other (Pianka's index ranging from 0.945 to 0.997), and apex carnivore and mesocarnivore species had high temporal overlap (coefficients of interspecific overlap ranging from 0.497 to 0.855). Large dietary overlap was observed between wolf and snow leopard (Pianka's index = 0.892) and Pallas's cat and Tibetan fox (Pianka's index = 0.997), suggesting the potential for increased resource competition for these species pairs. We concluded that spatial niche partitioning is likely to key driver in facilitating the coexistence of apex carnivore species, while spatial and temporal niche partitioning likely facilitate the coexistence of mesocarnivore species, and spatial and dietary niche partitioning facilitate the coexistence between apex and mesocarnivore species. Our findings consider partitioning across temporal, spatial, and dietary dimensions while examining diverse coexistence patterns of carnivore species in Qilian Mountain National Park, China. These findings will contribute substantially to current understanding of carnivore guilds and effective conservation management in fragile alpine ecosystems.


Asunto(s)
Ecosistema , Zorros , Animales , China , Zorros/fisiología , Parques Recreativos , Gatos , Lobos/fisiología , Carnívoros/fisiología , Dieta , Lynx/fisiología , Análisis Espacio-Temporal , Panthera/fisiología , Biodiversidad
10.
J Ethnopharmacol ; 337(Pt 1): 118812, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39260710

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Chronic atrophic gastritis (CAG), precancerous lesions of gastric cancer (PLGC), and gastric cancer (GC), seriously threaten human health. Traditional Chinese medicine (TCM) has been employed in the treatment of chronic diseases for a long time and has shown remarkable efficacy. AIM OF THE STUDY: Recently, there has been an increasing use of TCM in treating CAG, PLGC, and GC. The objective of this study is to compile a comprehensive overview of the existing research on the effects and molecular mechanisms of TCM, including formulas, single herbs, and active components. MATERIALS AND METHODS: To obtain a comprehensive understanding of traditional use of TCM in treating these diseases, we reviewed ancient books and Chinese literature. In addition, keywords such as "TCM", "CAG", "PLGC", "GC", and "active ingredients" were used to collect modern research on TCM published in databases such as CNKI, Web of Science, and Pubmed up to April 2024. All collected information was then summarized and analyzed. RESULTS: This study analyzed 174 articles, which covered the research progress of 20 TCM formulas, 14 single herbs, and 50 active ingredients in treating CAG, PLGC, and GC. Sources, effects, and molecular mechanisms of the TCM were summarized. CONCLUSIONS: This article reviews the progress of TCM in the management of CAG, PLGC, and GC, which will provide a foundation for the clinical application and further development of TCM.

11.
Sci Transl Med ; 16(764): eadp0004, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39259809

RESUMEN

Myelodysplastic syndrome and acute myeloid leukemia (AML) belong to a continuous disease spectrum of myeloid malignancies with poor prognosis in the relapsed/refractory setting necessitating novel therapies. Natural killer (NK) cells from patients with myeloid malignancies display global dysfunction with impaired killing capacity, altered metabolism, and an exhausted phenotype at the single-cell transcriptomic and proteomic levels. In this study, we identified that this dysfunction was mediated through a cross-talk between NK cells and myeloid blasts necessitating cell-cell contact. NK cell dysfunction could be prevented by targeting the αvß-integrin/TGF-ß/SMAD pathway but, once established, was persistent because of profound epigenetic reprogramming. We identified BATF as a core transcription factor and the main mediator of this NK cell dysfunction in AML. Mechanistically, we found that BATF was directly regulated and induced by SMAD2/3 and, in turn, bound to key genes related to NK cell exhaustion, such as HAVCR2, LAG3, TIGIT, and CTLA4. BATF deletion enhanced NK cell function against AML in vitro and in vivo. Collectively, our findings reveal a previously unidentified mechanism of NK immune evasion in AML manifested by epigenetic rewiring and inactivation of NK cells by myeloid blasts. This work highlights the importance of using healthy allogeneic NK cells as an adoptive cell therapy to treat patients with myeloid malignancies combined with strategies aimed at preventing the dysfunction by targeting the TGF-ß pathway or BATF.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Epigénesis Genética , Células Asesinas Naturales , Leucemia Mieloide Aguda , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/inmunología , Humanos , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/inmunología , Animales , Factor de Crecimiento Transformador beta/metabolismo , Transducción de Señal , Ratones , Reprogramación Celular , Proteína smad3/metabolismo , Proteína Smad2/metabolismo
12.
RSC Adv ; 14(38): 27778-27788, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39224629

RESUMEN

Four-layer hexagonal silicon carbide (4H-SiC) is a promising material for high-temperature and radiation-rich environments due to its excellent thermal conductivity and radiation resistance. However, real 4H-SiC crystals often contain Shockley-type stacking faults (SSF), which can affect their radiation resistance. This study employed molecular dynamics (MD) simulation method to explore the effects of SSF on radiation displacement cascades in 4H-SiC. We conducted a comprehensive study of various SSF within the crystalline framework of 4H-SiC, and analyzed their stacking fault energy (SFE). We simulated the radiation displacement cascade in 4H-SiC with SSF and analyzed the effects of SSF on the distribution of radiation displacement defects. We simulated the radiation displacement cascade in 4H-SiC with SSF under different energies of primary knock-on atom (E PKA) and temperatures (T) conditions, and analyzed the variation pattern of the number of radiation displacement defects and clusters. The results indicated that SSF limits defect distribution position. SSF has an effect on the defects and clusters of 4H-SiC in the displacement cascade, and SSF can affect the maximum working temperature of 4H-SiC.

13.
Sci Total Environ ; 953: 176043, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39241878

RESUMEN

As a novel pollutant, microplastic pollution has become a global environmental concern. Melatonin (MT) has a protective effect on the damage caused by pollutants. However, there is still a lack of research on the transgenerational toxicity of microplastics and the alleviation of microplastics toxicity by MT. In this study, the adult zebrafish was exposed to (0, 0.1 and 1 mg/L) polystyrene nanoplastics (PSNP) with or without (1 µM) MT for 14 days, and embryos (F1) were used for experiments. Our study found that long-term exposure of parents to 1 mg/L PSNP reduced fertilization rate and survival rate of offspring, increased the deformity rate and induced embryos to hatch in advance. The growth inhibition of offspring was related to the gene transcription of the growth hormone/insulin-like growth factor axis. Moreover, PSNP caused oxidative stress in offspring, damaged immune system, reduced antioxidant capacity and induced apoptosis. MT supplementation could effectively alleviate the developmental toxicity and oxidative damage of offspring, but the negative effects brought by PSNP could not be completely eliminated. Our research provided a new reference for the protective effect of MT on transgenerational toxicity induced by PSNP.

14.
Stroke Vasc Neurol ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39266208

RESUMEN

PURPOSE: This study retrospectively investigated whether infarction in specific Alberta Stroke Program Early CT Score (ASPECTS) regions is associated with clinical outcome in patients with symptomatic non-acute internal carotid or middle cerebral artery occlusion who underwent endovascular recanalisation (ER). METHODS: Preoperative ASPECTS and region of infarction were recorded before recanalisation. Clinical outcome was evaluated 90 days after the procedure using the modified Rankin Scale; a score>2 was defined as poor outcome. Secondary outcomes included postprocedural cerebral oedema, intracranial haemorrhage (ICH) and symptomatic ICH. RESULTS: Among the 86 patients included, 90-day outcome was poor in 30 (34.9%) and 40 experienced cerebral oedema (46.5%). Multivariate logistic regression models showed that lenticular nucleus infarction (OR 19.61-26.00, p<0.05), admission diastolic blood pressure (OR 1.07-1.08, p<0.05), preprocedural National Institutes of Health Stroke Scale (OR 1.96-2.05, p<0.001) and haemorrhagic transformation (OR 14.99-18.81, p<0.05) were independent predictors of poor 90-day outcome. The area under the receiver operating characteristic curve for lenticular nucleus infarction as a predictor of poor outcome was 0.73. M2 region infarction (OR 26.07, p<0.001) and low American Society of Interventional and Therapeutic Neuroradiology/Society of Interventional Radiology collateral circulation grade (OR 0.16, p=0.001) were independent predictors of postprocedural cerebral oedema. The area under the receiver operating characteristic curve for M2 region infarction as a predictor of cerebral oedema was 0.64. Region of infarction did not significantly differ between patients with and without postprocedural ICH or symptomatic ICH. CONCLUSIONS: Lenticular nucleus and M2 region infarction were independent predictors of poor 90-day outcome and postprocedural cerebral oedema, respectively, in patients with non-acute anterior circulation large artery occlusion who underwent ER.

15.
Hematology ; 29(1): 2399361, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39263910

RESUMEN

OBJECTIVE: The α-globin fusion gene between the HBA2 and HBAP1 genes, is clinically important in thalassemia screening because this fusion gene can cause severe hemoglobin (Hb) H disease when combined with α0 -thalassemia (α0 -thal). In this study, we evaluate the red blood cell parameters of α-thalassemia fusion gene in southern China. METHOD: Study samples suspected of α-thalassemia fusion gene were collected and confirmed by PCR-sequencing from one medical lab center in southern China. Their genotypes and phenotypes were analyzed. RESULTS: A total of 266 cases of α-thalassemia fusion gene were confirmed in our lab from 2017 to 2023, most of them were from Hainan province (169 cases) and Huadu district of Guangzhou (21 cases), the nationality of 143 cases from Hainan was identified, with 71.3% (102/143) being from the Li minority. The Hb, MCV, MCH for αα/(αα)fusion in adult males were 143.5±11.83g/L, 81.51±4.39 fl, and 26.26±1.29 pg, respectively; and in females, they were 126.69±12.89 g/L, 80.10±4.05 fl, 25.8±2.04 pg, respectively. All 12 cases (αα) Fusion/ --SEA showed anemia with decreased Hb, MCV and MCH. CONCLUSION: The carriers of α-globin fusion gene heterozygotes are clinically silent and exhibit an α+ phenotype. Individuals with (αα)Fusion/--SEA show apparent anemia. This α-globin fusion gene is relatively common in southern China, specifically among the Li minority of Hainan province. Therefore, it should be taken into account for genetic counseling purposes.


Asunto(s)
Genotipo , Fenotipo , Talasemia alfa , Humanos , Talasemia alfa/genética , Talasemia alfa/epidemiología , Masculino , Femenino , China/epidemiología , Adulto , Globinas alfa/genética , Persona de Mediana Edad , Niño , Adolescente , Adulto Joven
16.
Environ Sci Technol ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39258394

RESUMEN

The foliar uptake of Fe3O4, Cr2O3, CuO, and ZnO nanoparticles (NPs) by maize (Zea mays L.) was studied in a lab-scale experiment. The significant increase of Fe concentrations in leaves exposed to Fe3O4 was observed in both stomatal closing and stomatal opening treatments, suggesting the presence of a nonstomatal uptake. In parallel treatments with equal doses of Fe3O4 (∼200 nm), Cr2O3 (∼300 nm), CuO (∼30 nm), and ZnO (∼40 nm) (20-200 µg), the retention percentage of Fe in the leaves (21.0-69.0%) was higher than that of Cr, Cu, and Zn (0.5-14.0%). The steric hindrance effect seems more important for NPs of >200 nm, while hydrophobic surface and negative charge promote the foliar uptake of NPs smaller than 200 nm. The accumulation of NPs in the cuticle was observed through dark-field hyperspectral microscopy. Cr2O3, Fe3O4, and CuO NPs were difficult to penetrate the cuticle. In comparison, ZnO further migrated and distributed within the extracellular space of epidermal and mesophyll cells of the exposed leaf, possibly due to its comparatively higher solubility and hydrophilicity. The findings highlight the potential of the nonstomatal uptake, which might be a critical route for metallic oxide NPs to enter the food chain.

17.
Mikrochim Acta ; 191(10): 590, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39259417

RESUMEN

Photoelectrochemical (PEC) detection as a potential development strategy for hydrogen peroxide and dopamine sensors has received extensive attentions. Herein, BiOI/ZnIn2S4-X (X = n (BiOI)/n(ZnIn2S4)) heterojunction was synthesized using various molar ratios via a two-step method. A series of characterization techniques were employed to analyze the composition, surface structure, valence state, and optical properties of BiOI/ZnIn2S4-X. The results show that BiOI/ZnIn2S4-X perform significantly better than both BiOI and ZnIn2S4. Furthermore, BiOI/ZnIn2S4-9% exhibits superior visible light absorption capacity and photocurrent response among all of the BiOI/ZnIn2S4-X tested. Therefore, a PEC sensor was developed using BiOI/ZnIn2S4-9% for the detection of hydrogen peroxide and dopamine. The linear detection range for hydrogen peroxide spans from to 1 ~ 40,000 µM, with the LOD of 0.036 µM (S/N = 3). For dopamine, the corresponding values are 2 ~ 250 µM for the linear detection range, and 0.017 µM for the LOD, respectively. The sensor exhibits demonstrates excellent stability, reproducibility and resistance to interference, enabling the detection of real samples and thus holds promising application potential.

18.
Ergonomics ; : 1-18, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39109493

RESUMEN

This study investigates driving behaviour in different stages of rear-end conflicts using vehicle trajectory data. Three conflict stages (pre-, in-, and post-conflict) are defined based on time-to-collision (TTC) indicator. Four indexes are selected to capture within-group and between-group characteristics of the stages. Besides, this study also examines the prediction performance of conflict stage identification using specific driving behaviour characteristics associated with each stage. Results reveal variations in dominant driving characteristics and predictive importance across stages. Heterogeneity exists within stages, with differences among clusters. Drivers slow down during in-conflict, with decreasing speed reduction as stages progress. Reaction time increases in post-conflict. Insufficient space gaps contribute to rear-end conflicts in the in-conflict stage. Furthermore, the prediction performance of conflict stage identification, based on the specific driving behaviour characteristics associated with each stage, is commendable. This study enhances understanding and prediction of conflict stage identification in rear-end conflicts.Practitioner summary: This study explores driving behaviour in rear-end conflict stages using trajectory data. It identifies pre-, in-, and post-conflict stages via time-to-collision indicator and assesses within-group and between-group characteristics. Besides, prediction performance for conflict stage identification based on these characteristics is commendable. This research enhances understanding and prediction of rear-end conflicts.

19.
bioRxiv ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39091763

RESUMEN

Sustained attention, the ability to focus on a stimulus or task over extended periods, is crucial for higher level cognition, and is impaired in individuals diagnosed with neuropsychiatric and neurodevelopmental disorders, including attention-deficit/hyperactivity disorder, schizophrenia, and depression. Translational tasks like the rodent continuous performance test (rCPT) can be used to study the cellular mechanisms underlying sustained attention. Accumulating evidence points to a role for the prelimbic cortex (PrL) in sustained attention, as electrophysiological single unit and local field (LFPs) recordings reflect changes in neural activity in the PrL in mice performing sustained attention tasks. While the evidence correlating PrL electrical activity with sustained attention is compelling, limitations inherent to electrophysiological recording techniques, including low sampling in single unit recordings and source ambivalence for LFPs, impede the ability to fully resolve the cellular mechanisms in the PrL that contribute to sustained attention. In vivo endoscopic calcium imaging using genetically encoded calcium sensors in behaving animals can address these questions by simultaneously recording up to hundreds of neurons at single cell resolution. Here, we used in vivo endoscopic calcium imaging to record patterns of neuronal activity in PrL neurons using the genetically encoded calcium sensor GCaMP6f in mice performing the rCPT at three timepoints requiring differing levels of cognitive demand and task proficiency. A higher proportion of PrL neurons were recruited during correct responses in sessions requiring high cognitive demand and task proficiency, and mice intercalated non-responsive-disengaged periods with responsive-engaged periods that resemble attention lapses. During disengaged periods, the correlation of calcium activity between PrL neurons was higher compared to engaged periods, suggesting a neuronal network state change during attention lapses in the PrL. Overall, these findings illustrate that cognitive demand, task proficiency, and task engagement differentially recruit activity in a subset of PrL neurons during sustained attention.

20.
World J Diabetes ; 15(8): 1712-1716, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39192853

RESUMEN

Diabetic peripheral neuropathy (DPN) is one of the strongest risk factors for diabetic foot ulcers (neuropathic ulcerations) and the existing ulcers may further deteriorate due to the damage to sensory neurons. Moreover, the resulting numbness in the limbs causes difficulty in discovering these ulcerations in a short time. DPN is associated with gut microbiota dysbiosis. Traditional Chinese medicine (TCM) compounds such as Shenqi Dihuang Decoction, Huangkui Capsules and Qidi Tangshen Granules can reduce the clinical symptoms of diabetic nephropathy by modulating gut microbiota. The current review discusses whether TCM compounds can reduce the risk of DPN by improving gut mic-robiota.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA