Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell Oncol (Dordr) ; 47(4): 1253-1265, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38536650

RESUMEN

OBJECTIVES: Previously, Interferon-induced Protein with Tetratricopeptide Repeats 1 (IFIT1) has been shown to promote cancer development. Here, we aimed to explore the role of IFIT1 in the development and progression of pancreatic cancer, including the underlying mechanisms. METHODS: We explored IFIT1 expression in pancreatic cancer samples using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. Cell Counting Kit-8 (CCK8), colony formation, scratch wound-healing and Transwell assays were performed to assess the proliferation, migration and invasion abilities of pancreatic cancer cells. Gene Set Enrichment Analysis (GSEA) and Western blotting were performed to assess the regulatory effect of IFIT1 on the Wnt/ß-catenin pathway. RESULTS: We found that upregulation of IFIT1 expression is common in pancreatic cancer and is negatively associated with overall patient survival. Knockdown of IFIT1 expression led to decreased proliferation, migration and invasion of pancreatic cancer cells. We also found that IFIT1 could regulate Wnt/ß-catenin signaling, and that a Wnt/ß-catenin agonist could reverse this effect. In addition, we found that IFIT1 can promote epithelial-mesenchymal transition (EMT) of pancreatic cancer cells. CONCLUSIONS: Our data indicate that IFIT1 increases pancreatic cancer cell proliferation, migration and invasion by activating the Wnt/ß-catenin pathway. In addition, we found that EMT could be regulated by IFIT1. IFIT1 may serve as a potential therapeutic target for pancreatic cancer.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Invasividad Neoplásica , Neoplasias Pancreáticas , Proteínas de Unión al ARN , Vía de Señalización Wnt , Humanos , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proliferación Celular/genética , Movimiento Celular/genética , Vía de Señalización Wnt/genética , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , beta Catenina/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética
2.
Heliyon ; 9(10): e20464, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37842592

RESUMEN

Background: Armadillo repeat-containing 10 (ARMC10) is involved in the progression of multiple types of tumors. Pancreatic adenocarcinoma (PAAD) is a lethal disease with poor survival and prognosis. Methods: We acquired the data of ARMC10 in PAAD patients from the cancer genome atlas (TCGA) and gene expression omnibus (GEO) datasets and compared the expression level with normal pancreatic tissues. We evaluated the relevance between ARMC10 expression and clinicopathological factors, immune infiltration degree and prognosis in PAAD. Results: High expression of ARMC10 was relevant to T stage, M stage, pathologic stage, histologic grade, residual tumor, primary therapy outcome (P < 0.05) and related to lower Overall-Survival (OS), Disease-Specific Survival (DSS), and Progression-Free Interval (PFI). Gene set enrichment analysis showed that ARMC10 was related to methylation in neural precursor cells (NPC), G alpha (i) signaling events, APC targets, energy metabolism, potassium channels and IL10 synthesis. The expression level of ARMC10 was positively related to the abundance of T helper cells and negatively to that of plasmacytoid dendritic cells (pDCs). Knocking down of ARMC10 could lead to lower proliferation, invasion, migration ability and colony formation rate of PAAD cells in vitro. Conclusions: Our research firstly discovered ARMC10 as a novel prognostic biomarker for PAAD patients and played a crucial role in immune regulation in PAAD.

4.
BMC Surg ; 23(1): 222, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37559107

RESUMEN

BACKGROUND: Delayed gastric emptying (DGE) remains one of the major complications after pancreaticoduodenectomy (PD), with discrepant reports of its contributing factors. This study aimed to develop a nomogram to identify potential predictors and predict the probability of DGE after PD. METHODS: This retrospective study enrolled 422 consecutive patients who underwent PD from January 2019 to December 2021 at our institution. The LASSO algorithm and multivariate logistic regression were performed to identify independent risk and protective factors associated with clinically relevant delayed gastric emptying (CR-DGE). A nomogram was established based on the selected variables. Then, the calibration curve, ROC curve, decision curve analysis (DCA), and clinical impact curve (CIC) were applied to evaluate the predictive performance of our model. Finally, an independent cohort of 45 consecutive patients from January 2022 to March 2022 was enrolled to further validate the nomogram. RESULTS: Among 422 patients, CR-DGE occurred in 94 patients (22.2%). A previous history of chronic gastropathy, intraoperative plasma transfusion ≥ 400 ml, end-to-side gastrointestinal anastomosis, intra-abdominal infection, incisional infection, and clinically relevant postoperative pancreatic fistula (CR-POPF) were identified as risk predictors. Minimally invasive pancreaticoduodenectomy (MIPD) was demonstrated to be a protective predictor of CR-DGE. The areas under the curve (AUCs) were 0.768 (95% CI, 0.706-0.830) in the development cohort, 0.766 (95% CI, 0.671-0.861) in the validation cohort, and 0.787 (95% CI, 0.633-0.940) in the independent cohort. Then, we built a simplified scale based on our nomogram for risk stratification. CONCLUSIONS: Our study identified seven predictors and constructed a validated nomogram that effectively predicted CR-DGE for patients who underwent PD.


Asunto(s)
Gastroparesia , Pancreaticoduodenectomía , Humanos , Pancreaticoduodenectomía/efectos adversos , Gastroparesia/epidemiología , Gastroparesia/etiología , Estudios Retrospectivos , Transfusión de Componentes Sanguíneos/efectos adversos , Factores de Riesgo , Plasma , Anastomosis Quirúrgica/efectos adversos , Medición de Riesgo , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Vaciamiento Gástrico
5.
Heliyon ; 8(9): e10416, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36091946

RESUMEN

Background: Phospholipase A/acyltransferase (PLAAT) family exhibits O- and N-acyltransferase activity and biosynthesize N-acylated ethanolamine phospholipids. Previously, PLAAT4 was seen as a tumor suppressor, but the exact function of PLAAT4 in pancreatic cancer was still unknown. In this study, we investigated the relationship of PLAAT4 and pancreatic cancer. Methods: Using the data from the cancer genome atlas (TCGA), Genotype-Tissue Expression (GTEx) database and Gene Expression Omnibus (GEO) datasets we compared the expression of PLAAT4 in normal and tumor tissues and analyzed the connections between PLAAT4 and several clinicopathological factors. Further, we conducted Gene ontology (GO) analysis, Gene set enrichment analysis (GSEA), single sample gene set enrichment analysis (ssGSEA) and estimate analysis to explore the association between PLAAT4 and biological function and immune infiltration. In addition, Kaplan-Meier (KM) analysis, univariate and multivariate Cox analysis were used to explore the association between PLAAT4 and prognosis. In addition, we plotted a nomogram according to the multivariate cox analysis visualizing the predictive ability of PLAAT4 on prognosis. In addition, we explore the influence of PLAAT4 on malignant behaviors of the pancreatic cancer cells in vitro. Results: After comparing the expression of PLAAT4 in normal and tumor tissues, we found that the expression of PLAAT4 was significantly high in pancreatic ductal adenocarcinoma (PDAC) samples. In addition, the results of GO and GSEA found that the expression of PLAAT4 was related to cell cycle checkpoints, M phase, regulation by p53, cell cycle mitotic and etc. Further, ssGSEA has shown that PLAAT4 was positively related to the abundance of aDC, Th1 cells, Th2 cells and negatively related to the Th17 cells. Subsequently, KM analysis, univariate and multivariate Cox analysis were used to analyze the correlation between PLAAT4 and prognosis. Additionally, we found that higher expression of PLAAT4 was related to T stage, N stage, histologic grade, etc (P < 0.05) and has a significant correlation with poor Overall Survival (OS), Disease-Specific Survival (DSS) and Progression-Free Interval (PFI). At last, we proved that PLAAT4 contributed to the malignant behaviors of the pancreatic cancer cells. Conclusion: This study indicated PLAAT4 as a novel prognostic biomarker and an important molecular that mediated immune response in pancreatic cancer.

6.
Cell Oncol (Dordr) ; 44(6): 1425-1437, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34791638

RESUMEN

OBJECTIVES: Previously, Interferon-induced Protein with Tetratricopeptide Repeats 1 (IFIT1) has been shown to promote cancer development. Here, we aimed to explore the role of IFIT1 in the development and progression of pancreatic cancer, including the underlying mechanisms. METHODS: We explored IFIT1 expression in pancreatic cancer samples using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. Cell Counting Kit-8 (CCK8), colony formation, scratch wound-healing and Transwell assays were performed to assess the proliferation, migration and invasion abilities of pancreatic cancer cells. Gene Set Enrichment Analysis (GSEA) and Western blotting were performed to assess the regulatory effect of IFIT1 on the Wnt/ß-catenin pathway. RESULTS: We found that upregulation of IFIT1 expression is common in pancreatic cancer and is negatively associated with overall patient survival. Knockdown of IFIT1 expression led to decreased proliferation, migration and invasion of pancreatic cancer cells. We also found that IFIT1 could regulate Wnt/ß-catenin signaling, and that a Wnt/ß-catenin agonist could reverse this effect. In addition, we found that IFIT1 can promote epithelial-mesenchymal transition (EMT) of pancreatic cancer cells. CONCLUSIONS: Our data indicate that IFIT1 increases pancreatic cancer cell proliferation, migration and invasion by activating the Wnt/ß-catenin pathway. In addition, we found that EMT could be regulated by IFIT1. IFIT1 may serve as a potential therapeutic target for pancreatic cancer.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Movimiento Celular , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Proteínas de Unión al ARN/metabolismo , Vía de Señalización Wnt , Proteínas Adaptadoras Transductoras de Señales/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Invasividad Neoplásica , Pronóstico , Proteínas de Unión al ARN/genética , Vía de Señalización Wnt/genética
7.
Front Oncol ; 11: 665192, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34123827

RESUMEN

Methyltransferase-like 18 (METTL18), a METTL family member, is abundant in hepatocellular carcinoma (HCC). Studies have indicated the METTL family could regulate the progress of diverse malignancies while the role of METTL18 in HCC remains unclear. Data of HCC patients were acquired from the cancer genome atlas (TCGA) and gene expression omnibus (GEO). The expression level of METTL18 in HCC patients was compared with normal liver tissues by Wilcoxon test. Then, the logistic analysis was used to estimate the correlation between METTL18 and clinicopathological factors. Besides, Gene Ontology (GO), Gene Set Enrichment Analysis (GSEA), and single-sample Gene Set Enrichment Analysis (ssGSEA) were used to explore relevant functions and quantify the degree of immune infiltration for METTL18. Univariate and Multivariate Cox analyses and Kaplan-Meier analysis were used to estimate the association between METTL18 and prognosis. Besides, by cox multivariate analysis, a nomogram was conducted to forecast the influence of METTL18 on survival rates. METTL18-high was associated with Histologic grade, T stage, Pathologic stage, BMI, Adjacent hepatic tissue inflammation, AFP, Vascular invasion, and TP53 status (P < 0.05). HCC patients with METTL18-high had a poor Overall-Survival [OS; hazard ratio (HR): 1.87, P < 0.001), Disease-Specific Survival (DSS, HR: 1.76, P = 0.015), and Progression-Free Interval (PFI, HR: 1.51, P = 0.006). Multivariate analysis demonstrated that METTL18 was an independent factor for OS (HR: 2.093, P < 0.001), DSS (HR: 2.404, P = 0.015), and PFI (HR: 1.133, P = 0.006). Based on multivariate analysis, the calibration plots and C-indexes of nomograms showed an efficacious predictive effect for HCC patients. GSEA demonstrated that METTL18-high could activate G2M checkpoint, E2F targets, KRAS signaling pathway, and Mitotic Spindle. There was a positive association between the METTL18 and abundance of innate immunocytes (T helper 2 cells) and a negative relation to the abundance of adaptive immunocytes (Dendritic cells, Cytotoxic cells etc.). Finally, we uncovered knockdown of METTL18 significantly suppressed the proliferation, invasion, and migration of HCC cells in vitro. This research indicates that METTL18 could be a novel biomarker to evaluate HCC patients' prognosis and an important regulator of immune responses in HCC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA