Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 37(13): 2652-4, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22743484

RESUMEN

We demonstrate that few-layered graphene sheets used as a saturable absorber can provide efficient Q-switching and mode-locking modulation in 1.34 µm Nd:GdVO(4) bulk lasers. The minimum Q-switched pulses were 450 ns for 260 mW average power, 43 kHz repetition rate, and 2.5 µJ pulse energy. For the mode-locked laser, an average power of 1.29 W was achieved with 11 ps pulse duration and 13 nJ pulse energy. To our knowledge, this average power is the highest yet obtained from a graphene mode-locked laser, and the corresponding optical-optical efficiency of 23% is the best result among 1.3 µm neodymium mode-locked lasers. The quality factor M(2) of the Q-switched beam was 1.4 and 1.6 in the horizontal and longitudinal planes, respectively, and the M(2) of the mode-locked beam reached 1.1 and 1.0. These results clearly indicate the advantages of few-layered graphene as a saturable absorber.

2.
Opt Express ; 19(10): 9950-5, 2011 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-21643251

RESUMEN

We demonstrated that the graphene could be used as an effective saturable absorber for Q-switched solid-state lasers. A graphene saturable absorber mirror was fabricated with large and high-quality graphene sheets deprived from the liquid phase exfoliation. Using this mirror, 105-ns pulses and 2.3-W average output power are obtained from a passively Q-switched Nd:GdVO(4) laser. The maximum pulse energy is 3.2 µJ. The slope efficiency is as high as 37% approximating to 40% of the continue-wave laser, indicating a low intrinsic loss of the graphene.

3.
Opt Lett ; 36(10): 1948-50, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21593945

RESUMEN

High-quality graphene sheets with lateral size over 20 µm have been obtained by bath sonicating after subjecting the wormlike graphite marginally to mixed oxidizer. To date, to our knowledge, they are the largest graphene sheets prepared by exfoliation in the liquid phase. A saturable absorber mirror was fabricated based on these sheets. We exploited it to realize mode-locking operation in a diode-pumped Nd:GdVO(4) laser. A pulse duration of 16 ps was produced with an average power of 360 mW and a highest pulse energy of 8.4 nJ for a graphene mode-locked laser.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA