Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Stem Cell Res Ther ; 15(1): 107, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38637896

RESUMEN

BACKGROUND: The detailed transcriptomic profiles during human serotonin neuron (SN) differentiation remain elusive. The establishment of a reporter system based on SN terminal selector holds promise to produce highly-purified cells with an early serotonergic fate and help elucidate the molecular events during human SN development process. METHODS: A fifth Ewing variant (FEV)-EGFP reporter system was established by CRISPR/Cas9 technology to indicate SN since postmitotic stage. FACS was performed to purify SN from the heterogeneous cell populations. RNA-sequencing analysis was performed for cells at four key stages of differentiation (pluripotent stem cells, serotonergic neural progenitors, purified postmitotic SN and purifed mature SN) to explore the transcriptomic dynamics during SN differentiation. RESULTS: We found that human serotonergic fate specification may commence as early as day 21 of differentiation from human pluripotent stem cells. Furthermore, the transcriptional factors ZIC1, HOXA2 and MSX2 were identified as the hub genes responsible for orchestrating serotonergic fate determination. CONCLUSIONS: For the first time, we exposed the developmental transcriptomic profiles of human SN via FEV reporter system, which will further our understanding for the development process of human SN.


Asunto(s)
Serotonina , Factores de Transcripción , Humanos , Factores de Transcripción/genética , Diferenciación Celular/genética , Perfilación de la Expresión Génica , Neuronas , Genes Reporteros
2.
Biomolecules ; 14(3)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38540689

RESUMEN

Stress is known to induce a reduction in adult hippocampal neurogenesis (AHN) and anxiety-like behaviors. Glucocorticoids (GCs) are secreted in response to stress, and the hippocampus possesses the greatest levels of GC receptors, highlighting the potential of GCs in mediating stress-induced hippocampal alterations and behavior deficits. Herein, RNA-sequencing (RNA-seq) analysis of the hippocampus following corticosterone (CORT) exposure revealed the central regulatory role of the p21 (Cdkna1a) gene, which exhibited interactions with oxidative stress-related differentially expressed genes (DEGs), suggesting a potential link between p21 and oxidative stress-related pathways. Remarkably, p21-overexpression in the hippocampal dentate gyrus partially recapitulated CORT-induced phenotypes, including reactive oxygen species (ROS) accumulation, diminished AHN, dendritic atrophy, and the onset of anxiety-like behaviors. Significantly, inhibiting ROS exhibited a partial rescue of anxiety-like behaviors and hippocampal alterations induced by p21-overexpression, as well as those induced by CORT, underscoring the therapeutic potential of targeting ROS or p21 in the hippocampus as a promising avenue for mitigating anxiety disorders provoked by chronic stress.


Asunto(s)
Corticosterona , Hipocampo , Corticosterona/farmacología , Corticosterona/metabolismo , Especies Reactivas de Oxígeno , Hipocampo/metabolismo , Depresión/tratamiento farmacológico , Neurogénesis/fisiología
3.
Adv Sci (Weinh) ; 10(32): e2303884, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37679064

RESUMEN

Directed differentiation of serotonin neurons (SNs) from human pluripotent stem cells (hPSCs) provides a valuable tool for uncovering the mechanism of human SN development and the associated neuropsychiatric disorders. Previous studies report that FOXA2 is expressed by serotonergic progenitors (SNPs) and functioned as a serotonergic fate determinant in mouse. However, in the routine differentiation experiments, it is accidentally found that less SNs and more non-neuronal cells are obtained from SNP stage with higher percentage of FOXA2-positive cells. This phenomenon prompted them to question the role of FOXA2 as an intrinsic fate determinant for human SN differentiation. Herein, by direct differentiation of engineered hPSCs into SNs, it is found that the SNs are not derived from FOXA2-lineage cells; FOXA2-knockout hPSCs can still differentiate into mature and functional SNs with typical serotonergic identity; FOXA2 overexpression suppresses the SN differentiation, indicating that FOXA2 is not intrinsically required for human SN differentiation. Furthermore, repressing FOXA2 expression by retinoic acid (RA) and dynamically modulating Sonic Hedgehog (SHH) signaling pathway promotes human SN differentiation. This study uncovers the role of FOXA2 in human SN development and improves the differentiation efficiency of hPSCs into SNs by repressing FOXA2 expression.


Asunto(s)
Células Madre Pluripotentes , Serotonina , Humanos , Ratones , Animales , Serotonina/metabolismo , Proteínas Hedgehog/metabolismo , Neuronas/metabolismo , Diferenciación Celular/fisiología , Células Madre Pluripotentes/metabolismo , Factor Nuclear 3-beta del Hepatocito/genética , Factor Nuclear 3-beta del Hepatocito/metabolismo
4.
Stem Cell Reports ; 17(10): 2365-2379, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36150384

RESUMEN

Generation of serotonin neurons (SNs) from human pluripotent stem cells (hPSCs) provides a promising platform to explore the mechanisms of serotonin-associated neuropsychiatric disorders. However, neural differentiation always yields heterogeneous cell populations, making it difficult to identify and purify SNs in vitro or track them in vivo following transplantation. Herein, we generated a TPH2-EGFP reporter hPSC line with insertion of EGFP into the endogenous tryptophan hydroxylase 2 (TPH2) locus using CRISPR-Cas9-mediated gene editing technology. This TPH2-reporter, which faithfully indicated TPH2 expression during differentiation, enabled us to obtain purified SNs for subsequent transcriptional analysis and study of pharmacological responses to antidepressants. In addition, the reporter system showed strong EGFP expression to indicate SNs, which enabled us to explore in vitro and ex vivo electrophysiological properties of SNs. In conclusion, this TPH2-EGFP reporter cell line might be of great significance for studies on human SN-related development and differentiation, drug screening, disease modeling, and cell replacement therapies.


Asunto(s)
Células Madre Pluripotentes , Serotonina , Diferenciación Celular/genética , Línea Celular , Genes Reporteros , Humanos , Neuronas/metabolismo , Células Madre Pluripotentes/metabolismo , Triptófano Hidroxilasa/genética , Triptófano Hidroxilasa/metabolismo
5.
Front Endocrinol (Lausanne) ; 13: 1052487, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36699046

RESUMEN

Introduction: A vicious cycle ensues whereby prolonged exposure to social stress causes increased production of glucocorticoids (GCs), leading to obesity even further. Understanding the role of GCs, the key element in the vicious circle, might be helpful to break the vicious circle. However, the mechanism by which GCs induce obesity remains elusive. Methods: Corticosterone (CORT) was administered to mice for 8 weeks. Food and water intake were recorded; obesity was analyzed by body-weight evaluation and magnetic resonance imaging (MRI); intestinal proliferation and survival were evaluated by H&E staining, EdU-progression test, TUNEL assay and immunofluorescence staining of Ki67 and CC3; RNA-seq was performed to analyze transcriptional alterations in small intestines and livers. Results: Chronic CORT treatment induced obesity, longer small intestines, hepatic steatosis and elevated levels of serum insulin and leptin in mice; CORT-treated mice showed increased cell proliferation and decreased apoptosis of small intestines; RNA-seq results indicate that differentially expressed genes (DEGs) were enriched in several cell growth/death-associated signaling pathways. Discussion: Herein we find that administration of CORT to mice promotes the proliferation and survival of intestinal cells, which might contribute to the longer small intestines and the elongated intestinal villi, thus leading to increased nutrient absorption and obesity in mice. Understanding CORT-induced alterations in intestines and associated signaling pathways might provide novel therapeutic clues for GCs or stress-associated obesity.


Asunto(s)
Corticosterona , Obesidad , Ratones , Animales , Corticosterona/farmacología , Glucocorticoides/metabolismo , Intestinos , Proliferación Celular
6.
Cell Biochem Funct ; 39(6): 791-801, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34057222

RESUMEN

In this study, we established a mouse model of epilepsy and analysed abnormal neuronal damage and inflammation in the hippocampus of mice with kainic acid (KA)-induced epilepsy to provide the basis for the pathogenesis of epilepsy. C57 mice, aged 4 weeks, were injected intraperitoneally in the KA group with 20 mg/kg of KA and in the sham experimental group with normal saline. The whole brain and hippocampus of mice in the sham experimental group and KA epilepsy model group were collected on days 7, 14, 21 and 28 after injection. The difference in the protein expression in the hippocampus was detected using fluorescence immunohistochemistry. The hippocampal tissue was also collected and frozen to detect protein expression by western blot. The results of the haematoxylin and eosin (HE) and Nissl staining showed that the mouse model of temporal lobe epilepsy could be established by intraperitoneal injection of KA, and the success rate of the model was 53.8%. The expression of DCX-, ß-catenin-, GFAP- and Iba-1-labelled glial cells in the KA-induced epilepsy model group were higher than those in the sham group. The results of western blotting showed that the expression of DCX and ß-catenin in the KA-induced epilepsy model group was higher than that in the sham experimental group, while the expression of N-cadherin and Iba-1 on days 14 and 28 was significantly (P < .05) higher than that in the sham experimental group. In KA-induced epilepsy model group, the expression of Bcl-2 was decreased, while the expression of Bad and PUMA was increased.


Asunto(s)
Epilepsia/metabolismo , Hipocampo/metabolismo , Inflamación/metabolismo , Neuronas/metabolismo , Animales , Modelos Animales de Enfermedad , Proteína Doblecortina , Epilepsia/inducido químicamente , Epilepsia/patología , Hipocampo/patología , Inflamación/patología , Ácido Kaínico , Ratones , Ratones Endogámicos C57BL , Neuronas/patología
7.
Cell Biochem Funct ; 39(2): 180-189, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32840890

RESUMEN

Sonic hedgehog (Shh) plays important roles in developmental of vertebrate animal central nervous system (CNS), and Gli is its downstream signal molecule. Shh signalling is essential for pattern formation, cell-fate specification, axon guidance, proliferation, survival and differentiation of neurons in CNS development. The abnormal signalling pathway of Shh leads to the occurrence of many nervous system diseases. The mechanism of Shh signalling is complex and remains incompletely understood. Nevertheless, studies have revealed that Shh signalling pathway is classified into canonical and non-canonical pathways. Here we review the role of the Shh signalling pathway and its impact in CNS development and related diseases. Specifically, we discuss the role of Shh in the spinal cord and brain development, cell differentiation and proliferation in CNS and related diseases such as brain tumour, Parkinson's diseases, epilepsy, autism, depression and traumatic brain injury. We also highlight future directions of research that could help to clarify the mechanisms and consequences of Shh signalling in the process of CNS development and related diseases. SIGNIFICANCE OF THE STUDY: This review summarized the role of Shh signalling pathway in CNS development and related diseases such as brain tumour, Parkinson's diseases, epilepsy, autism, depression and traumatic brain injury. It also presented the author's opinions on the future research direction of Shh signalling pathway.


Asunto(s)
Enfermedades del Sistema Nervioso Central/patología , Sistema Nervioso Central/metabolismo , Proteínas Hedgehog/metabolismo , Transducción de Señal , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Diferenciación Celular , Sistema Nervioso Central/crecimiento & desarrollo , Enfermedades del Sistema Nervioso Central/metabolismo , Médula Espinal/crecimiento & desarrollo , Médula Espinal/metabolismo , Proteína con Dedos de Zinc GLI1/metabolismo
8.
Mech Dev ; 158: 103558, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31212004

RESUMEN

The spinal cord is an important part of the central nervous system (CNS). At present, the expression of the exogenous gene in the spinal cord of the embryonic mouse needs in utero spinal cord electroporation, but the success rate of this technique is very low. In this study, we have demonstrated the expression of an exogenous gene on one side of the spinal cord by combining two methods-in vitro electroporation of embryonic mouse spinal cord and organ spinal cord slices culture. We took 12-day embryonic mice, injected the green fluorescent protein (pCAGGS-GFP) plasmid into the spinal cord cavity in vitro, and then electroporated. The spinal cord was cut into 300-µm slices using a vibratory microtome. After cultured for 48 h, GFP-positive neurons were clearly observed on one side of the spinal cord, indicating that the exogenous gene was successfully transferred. The axon projection direction is basically unanimous from the inside to the lateral edge of the spinal cord. Compared to neurons in vivo, a single neuron in the culturing section has more complete neurites and is conducive to studying changes in the structure and behavior of individual neurons. Based on the above results, we have successfully established a convenient and efficient method for expressing the exogenous gene in the spinal cord of the mouse.


Asunto(s)
Electroporación , Embrión de Mamíferos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Médula Espinal/embriología , Médula Espinal/metabolismo , Técnicas de Cultivo de Tejidos/métodos , Animales , Movimiento Celular , Femenino , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Ratones , Neuronas/citología
9.
J Mol Neurosci ; 68(4): 539-548, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30982164

RESUMEN

Rap1 and N-cadherin regulate glia-independent translocation of cortical neurons. It remains unclear how Rap1 regulates N-cadherin-mediated neuronal migration. Here, we overexpressed Rap1gap in mouse brains (embryonic day 16) to inactivate Rap1, and observed that neurons did not migrate to the outer layer. We confirmed that Rap1 was involved in the regulation of late neurons in vivo. Rap1gap overexpression and Rap1 suppression in CHO cells decreased the expression of cytoskeletal proteins such as tubulin. Changes in the expression of cell morphology regulators, such as N-cadherin and ß-catenin, were also observed. Inhibition of N-cadherin in mouse brains prevented neuronal migration to the outer layer. The morphology of CHO cells was changed after overexpression of Rap1gap. We propose that Rap1 regulates the expression of N-cadherin during embryonic development, which affects ß-catenin expression. Beta-catenin in turn regulates cytoskeletal protein expression, ultimately affecting neuronal morphology and migration.


Asunto(s)
Cadherinas/metabolismo , Movimiento Celular , Neuronas/metabolismo , Proteínas de Unión al GTP rap1/metabolismo , Animales , Células CHO , Corteza Cerebral/citología , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Cricetinae , Cricetulus , Ratones , Ratones Endogámicos C57BL , Neuronas/fisiología , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Proteínas de Unión al GTP rap1/genética
10.
J Cell Mol Med ; 23(5): 3549-3562, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30834718

RESUMEN

Sonic hedgehog (SHH) is a vertebrate homologue of the secreted Drosophila protein hedgehog and is expressed by the notochord and floor plate in the developing spinal cord. Sonic hedgehog provides signals relevant for positional information, cell proliferation and possibly cell survival, depending on the time and location of expression. Although the role of SHH in providing positional information in the neural tube has been experimentally proven, the underlying mechanism remains unclear. In this study, in ovo electroporation was employed in the chicken spinal cord during chicken embryo development. Electroporation was conducted at stage 17 (E2.5), after electroporation the embryos were continued incubating to stage 28 (E6) for sampling, tissue fixation with 4% paraformaldehyde and frozen sectioning. Sonic hedgehog and related protein expressions were detected by in situ hybridization and fluorescence immunohistochemistry and the results were analysed after microphotography. Our results indicate that the ectopic expression of SHH leads to ventralization in the spinal cord during chicken embryonic development by inducing abnormalities in the structure of the motor column and motor neuron integration. In addition, ectopic SHH expression inhibits the expression of dorsal transcription factors and commissural axon projections. The correct location of SHH expression is vital to the formation of the motor column. Ectopic expression of SHH in the spinal cord not only affects the positioning of motor neurons, but also induces abnormalities in the structure of the motor column. It leads to ventralization in the spinal cord, resulting in the formation of more ventral neurons forming during neuronal formation.


Asunto(s)
Proteínas Aviares/genética , Desarrollo Embrionario/genética , Proteínas Hedgehog/genética , Neuronas Motoras/metabolismo , Médula Espinal/metabolismo , Animales , Proteínas Aviares/metabolismo , Axones/metabolismo , Diferenciación Celular/genética , Embrión de Pollo , Pollos , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/metabolismo , Médula Espinal/citología , Médula Espinal/embriología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
J Cell Mol Med ; 23(3): 1813-1826, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30565384

RESUMEN

Organotypic slice culture is a living cell research technique which blends features of both in vivo and in vitro techniques. While organotypic brain slice culture techniques have been well established in rodents, there are few reports on the study of organotypic slice culture, especially of the central nervous system (CNS), in chicken embryos. We established a combined in ovo electroporation and organotypic slice culture method to study exogenous genes functions in the CNS during chicken embryo development. We performed in ovo electroporation in the spinal cord or optic tectum prior to slice culture. When embryonic development reached a specific stage, green fluorescent protein (GFP)-positive embryos were selected and fluorescent expression sites were cut under stereo fluorescence microscopy. Selected tissues were embedded in 4% agar. Tissues were sectioned on a vibratory microtome and 300 µm thick sections were mounted on a membrane of millicell cell culture insert. The insert was placed in a 30-mm culture dish and 1 ml of slice culture media was added. We show that during serum-free medium culture, the slice loses its original structure and propensity to be strictly regulated, which are the characteristics of the CNS. However, after adding serum, the histological structure of cultured-tissue slices was able to be well maintained and neuronal axons were significantly longer than that those of serum-free medium cultured-tissue slices. As the structure of a complete single neuron can be observed from a slice culture, this is a suitable way of studying single neuronal dynamics. As such, we present an effective method to study axon formation and migration of single neurons in vitro.


Asunto(s)
Sistema Nervioso Central/citología , Desarrollo Embrionario , Proteínas Fluorescentes Verdes/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Técnicas de Cultivo de Órganos/métodos , Animales , Sistema Nervioso Central/embriología , Sistema Nervioso Central/metabolismo , Embrión de Pollo , Pollos , Electroporación , Neuronas/metabolismo
12.
Histochem Cell Biol ; 151(3): 239-248, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30250974

RESUMEN

N-cadherin, a member of the cadherin family, plays an important role in neural development. In addition, N-cadherin has been reported to be crucial in neuronal migration, axonal outgrowth, and axonal path-finding. However, the mechanism underlying the effects of N-cadherin in neuronal migration is not entirely clear. In this study, we investigated the overexpression or knockdown of N-cadherin in the optic tectum during chicken embryo development, and then analyzed the effect of N-cadherin on neuronal migration. The results showed that compared with the control group, in the N-cadherin knockdown group, the neuronal migration of the optic tectum was significantly affected and could not arrive at destination. The stratum griseum central layer of the optic tectum mainly includes multipolar neurons, which could not be formed after the knockdown of N-cadherin, and more neurons form the bipolar or monopolar neurons compared with the control group. Compared with the control group, more cells stayed in the neuroepithelium layer. The axonal length in the optic tectum was significantly (P < 0.001) shorter in the N-cadherin knockdown group than in the control group. These results reveal that the knockdown of N-cadherin mainly affects the length of axons and formation of multipolar neurons in the development of the chicken optic tectum, which eventually results in the inhibition of neuronal migration.


Asunto(s)
Cadherinas/metabolismo , Movimiento Celular , Neuronas/citología , Neuronas/metabolismo , Colículos Superiores/citología , Colículos Superiores/crecimiento & desarrollo , Animales , Pollos , Inmunohistoquímica , Colículos Superiores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA