Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant J ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39052425

RESUMEN

The tiller angle is an important agronomic trait that determines plant architecture and grain yield in rice (Oryza sativa L.). However, the molecular regulation mechanism of the rice tiller angle remains unclear. Here, we identified a rice tiller angle gene, LARGE TILLER ANGLE 1 (LATA1), using the MutMap approach. LATA1 encodes a C3H2C3-type RING zinc finger E3 ligase and the conserved region of the RING zinc finger is essential for its E3 activity. LATA1 was highly expressed in the root and tiller base and LATA1-GFP fusion protein was specifically localized to the nucleus. The mutation of LATA1 significantly reduced indole-3-acetic acid content and attenuated lateral auxin transport, thereby resulting in defective shoot gravitropism and spreading plant architecture in rice. Further investigations found that LATA1 may indirectly affect gravity perception by modulating the sedimentation rate of gravity-sensing amyloplasts upon gravistimulation. Our findings provide new insights into the molecular mechanism underlying the rice tiller angle and new genetic resource for the improvement of plant architecture in rice.

2.
Mol Breed ; 42(12): 73, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37313327

RESUMEN

Asian cultivated rice (Oryza sativa L.) has two subspecies, indica and japonica, which display clear differences in yield-related traits and environmental adaptation. Here, we developed a set of chromosome segment substitution lines (CSSLs) from an advanced backcross between japonica variety C418, as the recipient, and indica variety IR24, as the donor. Through evaluating the genotypes and phenotypes of 181 CSSLs, a total of 85 quantitative trait loci (QTLs) for 14 yield-related traits were detected, with individual QTLs explaining from 6.2 to 42.9% of the phenotypic variation. Moreover, twenty-six of these QTLs could be detected in the two trial sites (Beijing and Hainan). Among these loci, the QTLs for flag leaf width and effective tiller number, qFLW4.2 and qETN4.2, were delimited to an approximately 256-kb interval on chromosome 4. Through a comparison of nucleotide sequences and expression levels in "C418" and the CSSL CR31 containing qFLW4.2 and qETN4.2, we found that the NAL1 (LOC_Os04g52479) gene was the candidate gene for qFLW4.2 and qETN4.2. Our results show that CSSLs are powerful tools for identifying and fine-mapping QTLs, while the novel QTLs identified in this study will also provide new genetic resources for rice improvement. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01343-3.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA