Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.133
Filtrar
1.
Immunol Lett ; 270: 106913, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39233252

RESUMEN

OBJECTIVE: This study seeks to elucidate the expression, function, and clinical relevance of the T cell receptor interacting molecule (TRIM) within circulating CD4+T cell subsets in systemic lupus erythematosus (SLE) patients. METHODS: We assessed TRIM expression across distinct subpopulations of human peripheral blood mononuclear cells (PBMCs) through the analysis of publicly available single-cell RNA sequencing data. In addition, TRIM expression was investigated within CD4+T cell subsets of peripheral blood and spleens in mice. PBMCs were isolated from both SLE patients, healthy controls (HCs) and rheumatoid arthritis (RA) patients with subsequent measurement and comparative analysis of TRIM expression and functional molecules using flow cytometry. To gauge the clinical relevance of TRIM in SLE, correlation and ROC curve analyses were performed. RESULTS: In both healthy humans and mice, TRIM was higher expressed within CD4+T cell subsets, especially in naive CD4+T cells. TRIM+ Tregs exhibited lower Helios+ cells and CD45RA-FoxP3hi cells percentages compared to TRIM- Treg cells. TRIM+T cells demonstrated reduced granzyme B and perforin secretion and increased IFN-γ secretion in comparison to TRIM- T cells. Notably, the proportion of TRIM+CD4+T cells was diminished in SLE patients. The downregulation of TRIM+ in CD4+T cells positively correlated with diminished complement C3 and C1q levels and inversely correlated with CRP. The identification of TRIM-associated CD4 T cell subsets aids in distinguishing SLE patients from HCs and those with RA. CONCLUSIONS: Reduced TRIM expression is linked to abnormal CD4+T cell activation in SLE. TRIM-associated CD4+T cells may be implicated in the pathogenesis of SLE and hold potential for clinical diagnostic purposes.

2.
Sci Total Environ ; 952: 175992, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39241876

RESUMEN

Restoring submerged plants naturally has been a significant challenge in water ecology restoration programs. Some silicate-based mineral materials have shown promise in improving the substrate properties for plant growth. While it is well-established that silicate mineral materials enhance submerged plant growth by improving salt release and reducing salt stress, the influence of rhizosphere microorganisms on phytohormone synthesis and key enzyme activities has been underestimated. This study focused on two typical silicate mineral materials, bentonite and maifanite, to investigate their effects on Myriophyllum oguraense from both plant physiology and microbiome perspectives. The results demonstrated that both bentonite and maifanite regulated the synthesis of phytohormones such as gibberellin (GA) and methyl salicylate (MESA), leading to inhibition of cellular senescence and promotion of cell division. Moreover, these silicate mineral materials enhanced the activity of antioxidant enzymes, thereby reducing intracellular reactive oxygen species levels. They also optimized the structure of rhizosphere microbial communities, increasing the proportion of functional microorganisms like Nitrospirota and Sva0485, which indirectly influenced plant metabolism. Analysis of sediment physicochemical properties revealed increased rare earth elements, macronutrients, and oxygen content in pore water in the presence of silicate materials, creating favorable conditions for root growth. Overall, these findings shed light on the multifaceted mechanisms by which natural silicate mineral materials promote the growth of aquatic plants, offering a promising solution for restoring aquatic vegetation in eutrophic lake sediments.

4.
Dalton Trans ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39233653

RESUMEN

With an electron-deficient rigid planar structure and excellent π-π stacking ability, hexaazatriphenylene (HAT) and its derivatives are widely used as basic building blocks for constructing covalent organic frameworks (COFs), components of organic light-emitting diodes and solar cells, and electrode materials for lithium-ion batteries (LIBs). Here, a HAT derivative, hexaazatriphenylenehexacarbonitrile, is explored as an anode material for LIBs. The HAT anode exhibited high initial reversible capacities of 672 mA h g-1 at 100 mA g-1 and 550 mA h g-1 at 400 mA g-1 and stable cycling with a capacity of 503 mA h g-1 after 1000 cycles at 400 mA g-1 corresponding to a capacity retention of 91.5%. Furthermore, the lithium storage mechanism and the cause of the first irreversible capacity loss of the HAT anode were investigated by X-ray photoelectron spectroscopy (XPS) analysis and density functional theory (DFT) calculations. We have carried out a series of analyses on the mechanism of initial capacity loss. This study provides new insight on initial capacity loss and provides valuable insights into the molecular design and the electrochemical properties of HAT-based anode materials.

5.
Neuropsychol Rev ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235660

RESUMEN

Midlife has been suggested to be a crucial time to introduce interventions for improving cognitive functions. The effects of cognitive training (CT) in healthy middle-aged populations and more specifically during the menopausal transition have not been systematically investigated. To investigate the effects of CT on cognition in healthy middle-aged adults and specifically in females during the menopause transition, literature was searched inception to July 2023 and studies were included that examined the effects of CT on a defined cognitive outcome. The improvement on cognitive performance following CT was the main outcome measured as mean difference (from baseline to immediate post) estimates with corresponding 95% confidence intervals (CI) in meta-analysis and was discussed with the support of subgroup analysis based on outcome type (i.e., far or near-transfer) and cluster tabulations. Nineteen articles were included in the qualitative synthesis with a total of 7765 individuals, and eight articles were included in the meta-analyses. CT was categorized into six type clusters: Game-based CT, General CT, Speed of Processing Training, Working Memory Training, Strategy-based CT, and Cognitive Remediation. Cognitive outcome was divided into six clusters: working memory, verbal memory, language, executive function, attention/processing speed, and visual memory. Meta-analysis reported significant improvement in the domain of executive function (0.48, 95% CI 0.08-0.87), verbal memory (0.22, 95% CI 0.11-0.33), and working memory (0.16, 95% CI 0.05-0.26). CT confers benefits on various cognitive domains, suggesting a potential role of CT to promote optimal cognitive functioning in the midlife and specifically in women during the menopause transition.

6.
Asian J Pharm Sci ; 19(4): 100939, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39246507

RESUMEN

Ferroptosis is a nonapoptotic form of cell death characterized by iron dependence and lipid peroxidation. Ferroptosis is involved in a range of pathological processes, such as cancer. Many studies have confirmed that ferroptosis plays an essential role in inhibiting cancer cell proliferation. In addition, a series of small-molecule compounds have been developed, including erastin, RSL3, and FIN56, which can be used as ferroptosis inducers. The combination of ferroptosis inducers with anticancer drugs can produce a significant synergistic effect in cancer treatment, and patients treated with these combinations exhibit a better prognosis than patients receiving traditional therapy. Therefore, a thorough understanding of the roles of ferroptosis in cancer is of great significance for the treatment of cancer. This review mainly elaborates the molecular biological characteristics and mechanism of ferroptosis, summarizes the function of ferroptosis in cancer development and treatment,illustrates the application of ferroptosis in patient's prognosis prediction and drug discovery, and discusses the prospects of targeting ferroptosis.

7.
Inquiry ; 61: 469580241273119, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39237512

RESUMEN

The coronavirus disease (COVID-19) pandemic and associated infection control measures have introduced significant uncertainty, and the unbearable nature of this uncertainty has heightened the risk of mental health issues among college students. This study aimed to assess the impact of unbearable uncertainty during the COVID-19 pandemic on college students' depression and investigate the mediating role of coping strategies between unbearable uncertainty and depression. A cross-sectional survey was conducted with 714 Chinese university students using the Intolerance of Uncertainty Scale (IUS-12), Brief Coping Style Questionnaire, and Beck Depression Inventory (BDI-II). SPSS PROCESS was used for the partial correlation analyses and structural equation modeling. (1) Negative coping strategies were significantly positively correlated with intolerable uncertainty and depressive symptoms, while positive coping strategies were negatively correlated with both intolerable uncertainty and depressive symptoms. Intolerable uncertainty was significantly and positively correlated with depressive symptoms. (2) Intolerance to uncertainty significantly predicted depressive symptoms. Both negative and positive coping strategies played parallel mediating roles in the relationship between unbearable uncertainty and depressive symptoms among college students. This study found that coping strategies played a mediating role in the relationship between unbearable uncertainty and depression during the pandemic in 2019. Future research and interventions should focus on enhancing tolerance of uncertainty and promoting positive coping strategies.


Asunto(s)
Adaptación Psicológica , COVID-19 , Depresión , Estudiantes , Humanos , COVID-19/psicología , COVID-19/epidemiología , Incertidumbre , Masculino , Femenino , Estudiantes/psicología , Depresión/psicología , Depresión/epidemiología , Estudios Transversales , Universidades , Adulto Joven , China/epidemiología , SARS-CoV-2 , Encuestas y Cuestionarios , Pandemias , Adulto , Adolescente , Salud Mental , Habilidades de Afrontamiento
8.
Heliyon ; 10(16): e35862, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39224276

RESUMEN

Pain sensitivity varies depending on both the state and age of an individual. For example, chronic pain is more common in older individuals, but the underlying mechanisms remain unknown. This study revealed that 18-month-old mice (aged) experienced more severe and long-lasting allodynia and hyperalgesia in the chronic constriction injury (CCI)-induced pain state compared to 2-month-old mice. Interestingly, the aged mice had a higher baseline mechanical pain threshold than the adult mice. The expression of spinal receptor-active modification protein 1 (RAMP1), as a key component and regulator of the calcitonin gene-related peptide (CGRP) receptor for nociceptive transmission from the periphery to the spinal cord, was reduced in the physiological state but significantly increased after CCI in the aged mice compared to the adult mice. Moreover, when RAMP1 was knocked down using shRNA, the pain sensitivity of adult mice decreased significantly, and CCI-induced allodynia in aged mice was reduced. These findings suggest that spinal RAMP1 is involved in regulating pain sensitivity in a state- and age-dependent manner. Additionally, interfering with RAMP1 could be a promising strategy for alleviating chronic pain in older individuals.

9.
Heliyon ; 10(16): e36193, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39224338

RESUMEN

Objective: In clinical practice, there are few effective biomarkers for identifying non-alcoholic fatty liver disease (NAFLD). The aim of this study is to investigate the diagnostic value of γ-glutamyl transpeptidase to platelet ratio (GPR) combined with triglyceride (TG) in NAFLD. Methods: A total of 14,415 individuals participated in the annual physical examination. Multivariate logistic regression analysis was conducted to investigate the exposure factors associated with NAFLD. Spearman's analysis was performed to assess the correlation among the exposure factors of NAFLD. Furthermore, the diagnostic efficacy of the combination of GPR and TG in NAFLD was analyzed using the receiver operating characteristic curve (ROC). Results: The results of the multivariate logistic regression analysis showed that BMI (OR = 1.619), Systolic Blood Pressure (SBP) (OR = 1.014), Diastolic Blood Pressure (DBP) (OR = 1.028), GPR (OR = 12.809), and TG (OR = 2.936) were all risk factors for NAFLD, while HDL-C (OR = 0.215) was a protective factor. Spearman correlation analysis revealed significant positive correlations between GPR and SBP, DBP, BMI, TG (p < 0.01), but a negative correlation between GPR and HDL-C (p < 0.01). TG was only positively correlated with GPR (p < 0.001). ROC curve analysis demonstrated that the area under the curve (AUC) of GPR combined with TG for diagnosis of NAFLD was 0.855 (95 % CI: 0.819-0.891), sensitivity was 83.45 % and specificity was 73.56 %. Conclusion: This study indicated that high levels of GPR and TG were risk factors for NAFLD and demonstrated good clinical value in diagnosing NAFLD.

10.
Mar Life Sci Technol ; 6(3): 488-501, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39219677

RESUMEN

Mollusca exhibit remarkable diversity in shell coloration, attributed to the presence of melanin, a widely distributed pigment with various essential roles, such as mechanical strengthening, antioxidation and thermoregulation. However, the regulatory network governing melanogenesis and melanin transport in molluscs remains poorly understood. In this study, we conducted a systematic analysis of melanin distribution and transport in the Pacific oyster, utilizing light microscopy and high-resolution transmission electron microscopy. In addition, we characterized CgWnt1 and CgWnt2b-a in Crassostrea gigas, and analyzed Wnt signaling in melanocyte formation. Expression analysis revealed that these genes were predominantly expressed in the mantle of black-shelled individuals, particularly in the outer fold of the mantle. Furthermore, we employed RNA interference and inhibitors to specifically inhibit Wnt signaling in both in vivo and in vitro. The results revealed impaired melanogenesis and diminished tyrosinase activity upon Wnt signaling inhibition. These findings suggest the crucial role of Wnt ligands and downstream factors in melanogenesis. In summary, our study provides valuable insights into the regulatory mechanism of shell pigmentation in C. gigas. By demonstrating the promotion of melanogenesis through Wnt signaling modulation, we contribute to a better understanding of the complex processes underlying molluscan melanin production and shell coloration. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-024-00221-5.

11.
Heliyon ; 10(17): e36377, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39263166

RESUMEN

Patient-derived organoids (PDOs) have been proposed as a novel in vitro tumor model that can be applied to tumor research and drug screening. However, current tumor organoid models lack components of the tumor microenvironment, particularly tumor-associated macrophages(TAMs).We collected peripheral blood and tumor samples from 6 patients with extrahepatic cholangiocarcinoma(eCCA). Monocytes were induced into TAMs by cytokine and conditioned medium, and then co-cultured with tumor organoids. Our comprehensive analysis and comparison of histopathology and genomics results confirmed that this co-culture model can better capture intra- and inter-tumor heterogeneity retain the specific mutations of the original tumor. Drug sensitivity data in vitro revealed that gemcitabine and cisplatin are effective drugs for cholangiocarcinoma, but TAMs in the tumor microenvironment promote organoids growth and chemotherapy resistance. In conclusion, our organoid model of cholangiocarcinoma co-cultured with TAMs can not only shorten the model construction cycle, but also preserve the heterogeneity of original tumors to improve the accuracy of drug screening, and can also be applied to the researches of TAMs and tumors.

12.
Am J Cancer Res ; 14(8): 3962-3975, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39267665

RESUMEN

Neoadjuvant immune checkpoint blockade (ICB) has achieved significant success in treating various cancers, leading to improved therapeutic responses and survival rates among patients. However, in colorectal cancer (CRC), ICB has yielded poor results in tumors that are mismatch repair proficient, microsatellite-stable, or have low levels of microsatellite instability (MSI-L), which account for up to 95% of CRC cases. The underlying mechanisms behind the lack of immune response in MSI-negative CRC to immune checkpoint inhibitors remain an open conundrum. Consequently, there is an urgent need to explore the intrinsic mechanisms and related biomarkers to enhance the intratumoral immune response and render the tumor "immune-reactive". Intestinal microbes, such as the oral microbiome member Fusobacterium nucleatum (F. nucleatum), have recently been thought to play a crucial role in regulating effective immunotherapeutic responses. Herein, we advocate the idea that a complex interplay involving F. nucleatum, the local immune system, and the tumor microenvironment (TME) significantly influences ICB responses. Several mechanisms have been proposed, including the regulation of immune cell proliferation, inhibition of T lymphocyte, natural killer (NK) cell function, and invariant natural killer T (iNKT) cell function, as well as modification of the TME. This review aims to summarize the latest potential roles and mechanisms of F. nucleatum in antitumor immunotherapies for CRC. Additionally, it discusses the clinical application value of F. nucleatum as a biomarker for CRC and explores novel strategies, such as nano-delivery systems, for modulating F. nucleatum to enhance the efficacy of ICB therapy.

13.
J Appl Stat ; 51(12): 2402-2419, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39267714

RESUMEN

For checking time series models, the Ljung-Box, Li-Mak and Zhu-Wang statistics play an important role, which use the Pearson's correlation coefficient to implement (squared) residual (partial) autocorrelation tests. In this paper, we replace the Pearson's correlation coefficient with a new rank correlation coefficient and propose a new test statistic to conduct diagnostic checks for residuals in autoregressive moving average models, autoregressive conditional heteroscedasticity models and integer-valued time series models, respectively. We conduct simulations to assess the performance of the new test statistic, and compare it with existing ones, and the results show the superiority of the proposed one. We use three real examples to exhibit its usefulness.

14.
BMC Pediatr ; 24(1): 584, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39277760

RESUMEN

BACKGROUND: Gastroschisis is a common abdominal wall defect that increases infant mortality risk and health care costs. However, recent epidemiological data on gastroschisis in China is limited. METHODS: Using 2007-2020 data from the Chinese Birth Defects Monitoring Network (CBDMN), we analyzed gastroschisis prevalence rates stratified by birth year, maternal age group, residence area, geographical region, and infant sex. We also examined the temporal variations in prevalence, pregnancy outcomes of affected infants, prenatal diagnoses, and co-occurring anomalies. RESULTS: From 2007 to 2020, a total of 6,813 cases of gastroschisis were identified among 25,909,000 births, comprising 4,675 isolated and 2,138 non-isolated cases. Prevalence rates per 10,000 live and still births were 2.63, 1.80, and 0.83 for the overall, isolated, and non-isolated gastroschisis, respectively, all showing a decreasing trend over the study period. The prevalence of overall gastroschisis varied significantly by maternal age (< 20 years, 9.88/10,000; 20-24 years, 4.17/10,000; 25-29 year, 2.08/10,000; 30-34 years, 1.88/10,000;≥35 years, 2.24/10,000), maternal residence (urban, 2.45/10,000; rural, 2.85/10,000), geographic region (central, 2.54/10,000; east, 2.57/10,000; west, 2.80/10,000), and infant sex (male, 2.13/10,000; female, 1.79/10,000). Non-isolated gastroschisis cases had a higher early neonatal mortality rate than isolated cases (41.91% vs. 28.10%) and frequently co-occurred with musculoskeletal anomalies. CONCLUSIONS: This study highlights a declining trend in gastroschisis prevalence in Chinese population, a contrast to previous studies, and underscores the need for improved perinatal management due to adverse pregnancy outcomes associated with this condition.


Asunto(s)
Gastrosquisis , Humanos , Gastrosquisis/epidemiología , China/epidemiología , Femenino , Masculino , Prevalencia , Recién Nacido , Edad Materna , Adulto Joven , Adulto , Vigilancia de la Población , Embarazo , Resultado del Embarazo/epidemiología , Lactante
15.
Environ Sci Ecotechnol ; 22: 100470, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39280592

RESUMEN

Sedimentary organic matter (SOM) affects the stability of the aquatic carbon pool. The degradation process of SOM is complex for its multifaceted composition. The concentration and properties of SOM affect its steady state, yet the transformation processes of SOM in lakes remain unclear. Here we show the molecular and redox perspectives of SOM stability in polluted sediments with high organic matter content and diverse vegetation. We find significant differences in carbon fractions across various sites. The origin of the organic matter, determined using excitation-emission matrix spectra, influences the consistency of organic matter composition and biochemical degradation in lacustrine sediment. We also observe that sulfur-containing substances decrease carbon chain length and reduce organic matter stability. Fourier-transform ion cyclotron resonance mass spectrometry shows that sulfur-containing substances decrease the degree of saturation and cause reduction. In contrast, nitrogen-containing compounds increase the modified aromaticity index and humin content, enhancing organic carbon complexity and stability (p < 0.05). These results complement the characteristics and transformations of SOM. In a broader perspective, this study contributes to laying the foundation for understanding SOM stability in the carbon cycle and its future effects.

16.
J Stroke Cerebrovasc Dis ; 33(11): 107991, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39227001

RESUMEN

BACKGROUND: Limited observational research has explored the relationship between the non-high-density lipoprotein cholesterol (non-HDL-C) to high-density lipoprotein cholesterol (HDL-C) ratio (NHHR) and the risk of post-stroke depression (PSD). This study aims to investigate the potential associations between NHHR and PSD. METHODS: A cross-sectional study was conducted using data from stroke participants aged 20 and older, sourced from the National Health and Nutrition Examination Survey (NHANES) spanning 2005 to 2018. Depression was assessed using the PHQ-9 questionnaire. The association between NHHR and PSD risk was evaluated through weighted multivariate logistic regression and restricted cubic spline (RCS) models. Subgroup and sensitivity analyses were performed to validate the findings. RESULTS: In the continuous model, the NHHR value for the PSD group (3.23±1.84) was significantly higher than that of the non-PSD group (2.79±1.40, p=0.015). Logistic regression analysis in the fully adjusted model revealed a positive association between NHHR and PSD (OR 1.16, 95 % CI 1.03-1.30, p=0.016). Interaction tests showed no significant differences across strata (p > 0.05 for interaction). Restricted cubic spline results indicated a linear dose-response relationship between NHHR and PSD risk (P for non-linearity = 0.6). This association persisted in various subgroup analyses. CONCLUSION: NHHR was significantly correlated with an increased risk of PSD among U.S. adults. Further re-search on NHHR could contribute to the prevention and treatment of PSD.

17.
Eur J Med Chem ; 279: 116854, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39276582

RESUMEN

Hepatitis B Virus (HBV) remains a critical global health issue, with substantial morbidity and mortality. Current therapies, including interferons and nucleoside analogs, often fail to achieve complete cure or functional eradication. This review explores recent advances in anti-HBV agents, focusing on their innovative mechanisms of action. HBV entry inhibitors target the sodium taurocholate cotransporting polypeptide (NTCP) receptor, impeding viral entry, while nucleus translocation inhibitors disrupt key viral life cycle steps, preventing replication. Capsid assembly modulators inhibit covalently closed circular DNA (cccDNA) formation, aiming to eradicate the persistent viral reservoir. Transcription inhibitors targeting cccDNA and integrated DNA offer significant potential to suppress HBV replication. Immunomodulatory agents are highlighted for their ability to enhance host immune responses, facil-itating better control and possible eradication of HBV. These novel approaches represent significant advancements in HBV therapy, providing new strategies to overcome current treatment limitations. The development of cccDNA reducers is particularly critical, as they directly target the persistent viral reservoir, offering a promising pathway towards achieving a functional cure or complete viral eradication. Continued research in this area is essential to advance the effectiveness of anti-HBV therapies.

18.
Cancer Cell Int ; 24(1): 315, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39272147

RESUMEN

BACKGROUND: Lung squamous cell carcinoma (LUSCs) is associated with high mortality (20-30%) and lacks of effective treatments. Almost all LUSC exhibit somatic mutations in TP53. Wee1, a tyrosine kinase, regulates the cell cycle at the G2/M checkpoint. In TP53-deficient cells, the dependence on G2/M checkpoints increases. PD0166285 is the first reported drug with inhibitory activity against both Wee1 and PKMYT1. METHODS: Protein expression was determined by Western blot analysis. Cell proliferation was assessed using cell colony formation and CCK-8 assays. Cell cycle was performed by PI staining with flow cytometry. Apoptosis was evaluated using Annexin V-Phycoerythrin double staining and flow cytometry. DNA damage was detected through comet assay and immunofluorescence assay. In vivo, apoptosis and anti-tumor effects were assessed using the TUNEL assay, a nude mouse model, and immunohistochemistry (IHC). Co-immunoprecipitation assay was used to detect protein-protein interactions. We analyzed Wee1, PKMYT1, and Stat1 expression in pan-cancer studies using the Ualcan public database and assessed their prognostic implications with Kaplan-Meier curves. RESULT: PD0166285, a Wee1 inhibitor, effectively inhibits Wee1 activity, promoting cell entry into a mitotic crisis. Moreover, PD0166285 sensitizes cells to cisplatin, enhancing clinical outcomes. Our study demonstrated that PD016628 regulates the cell cycle through Rad51 and results in cell cycle arrest at the G2/M phase. We observed increased apoptosis in tumor cells treated with PD0166285, particularly when combined with cisplatin, indicating an enhanced apoptotic response. The upregulation of γ-H2AX serves as an indicator of mitotic catastrophe. Co-immunoprecipitation and data analysis revealed that apoptosis in LUSC is mediated through the Stat1 pathway, accompanied by decreased levels of Socs3. Furthermore, IHC staining confirmed significant differences in the expression of Phospho-CDK1 and γ-H2AX in LUSCs, suggesting involvement in DNA damage. CONCLUSIONS: In summary, our study suggests that PD0166285, an inhibitor of Wee1, sensitizes LUSC cells to cisplatin and modulates DNA damage and apoptosis pathways through Rad51 and Stat1, respectively. These findings highlight the combination of PD0166285 and cisplatin as a promising therapeutic approach for treating LUSC.

19.
Int J Mol Sci ; 25(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39273412

RESUMEN

NAC (NAM, ATAF1/2, and CUC2) transcription factors are unique and essential for plant growth and development. Although the NAC gene family has been identified in a wide variety of plants, its chromosomal location and function in Cannabis sativa are still unknown. In this study, a total of 69 putative CsNACs were obtained, and chromosomal location analysis indicated that the CsNAC genes mapped unevenly to 10 chromosomes. Phylogenetic analyses showed that the 69 CsNACs could be divided into six subfamilies. Additionally, the CsNAC genes in group IV-a are specific to Cannabis sativa and contain a relatively large number of exons. Promoter analysis revealed that most CsNAC promoters contained cis-elements related to plant hormones, the light response, and abiotic stress. Furthermore, transcriptome expression profiling revealed that 24 CsNAC genes in two Cannabis sativa cultivars (YM1 and YM7) were significantly differentially expressed under osmotic stress, and these 12 genes presented differential expression patterns across different cultivars according to quantitative real-time PCR (RT-qPCR) analysis. Among these, the genes homologous to the CsNAC18, CsNAC24, and CsNAC61 genes have been proven to be involved in the response to abiotic stress and might be candidate genes for further exploration to determine their functions. The present study provides a comprehensive insight into the sequence characteristics, structural properties, evolutionary relationships, and expression patterns of NAC family genes under osmotic stress in Cannabis sativa and provides a basis for further functional characterization of CsNAC genes under osmotic stress to improve agricultural traits in Cannabis sativa.


Asunto(s)
Cannabis , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Presión Osmótica , Filogenia , Proteínas de Plantas , Factores de Transcripción , Cannabis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Perfilación de la Expresión Génica , Genoma de Planta , Regiones Promotoras Genéticas , Estrés Fisiológico/genética , Cromosomas de las Plantas/genética , Mapeo Cromosómico
20.
Plants (Basel) ; 13(17)2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39273996

RESUMEN

Drought stress is a primary abiotic stress that causes significant losses to forestry and agricultural production. Therefore, exploring drought-responsive genes and their regulatory mechanism is crucial for plant molecular breeding for forestry and agriculture production safety. Small auxin-up RNA (SAUR) proteins are essential in plant growth and development but show functional diversity in stress response. In this study, the transcriptome sequencing data of Ammopiptanthus nanus seedlings revealed that the expression of AnSAUR50 was continuously downregulated under drought stress. Hence, the AnSAUR50 gene was cloned and functionally analyzed in drought response. The results showed that the coding sequence of AnSAUR50 was 315 bp in length and encoded 104 amino acids. The AnSAUR50 protein showed high conservation, possessed a SAUR-specific domain, and localized in the nucleus and cell membrane. The heterologous expression of the AnSAUR50 gene enhanced the drought sensitivity of the transgenic Arabidopsis with a lower survival rate, biomass, and higher malondialdehyde content and relative electrolyte leakage. Moreover, transgenic plants showed shorter root lengths and bigger stomatal apertures, resulting in facilitating water loss under drought stress. The study indicates that AnSAUR50 negatively regulates drought tolerance by inhibiting root growth and stomatal closure, which provides insights into the underlying function and regulatory mechanism of SAURs in plant stress response.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA