Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Curr Opin Struct Biol ; 51: 135-140, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29729574

RESUMEN

The morphological diversity of amyloid assemblies has complicated the development of disease therapies and the design of novel biomaterials for decades. Here we review the conformational evolution of amyloids from the initial liquid-liquid phase separation into the oligomeric particle phase to the nucleation of the more ordered assembly phases. With mounting evidence that the assemblies emerging from the oligomeric phases may not be stable in solution and undergo further structural transitions, we propose the concept of conformational evolution, where mutations may occur at the ends or on the surface of the pre-existing fibers and different morphologies are under selection throughout the assembly process.


Asunto(s)
Amiloide/química , Proteínas Amiloidogénicas/química , Proteínas Amiloidogénicas/metabolismo , Modelos Moleculares , Conformación Proteica , Proteínas Amiloidogénicas/genética , Humanos , Mutación , Agregado de Proteínas , Agregación Patológica de Proteínas , Unión Proteica , Multimerización de Proteína , Relación Estructura-Actividad
2.
Org Biomol Chem ; 15(34): 7063-7071, 2017 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-28715014

RESUMEN

Living systems contain remarkable functional capability built within sophisticated self-organizing frameworks. Defining the assembly codes that coordinate these systems could greatly extend nanobiotechnology. To that end, we have highlighted the self-assembling architecture of the chlorosome antenna arrays and report the emulation and extension of their features for the development of cell-compatible photoredox materials. We specifically review work on amyloid peptide scaffolds able to (1) organize light-harvesting chromophores, (2) break peptide bilayer symmetry for directional energy and electron transfer, and (3) incorporate redox active metal ions at high density for energy storage.


Asunto(s)
Amiloide/química , Complejos de Proteína Captadores de Luz/química , Amiloide/metabolismo , Metabolismo Energético , Complejos de Proteína Captadores de Luz/metabolismo
3.
Nucleic Acids Res ; 40(11): 4933-41, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22344693

RESUMEN

Several Sox-Oct transcription factor (TF) combinations have been shown to cooperate on diverse enhancers to determine cell fates. Here, we developed a method to quantify biochemically the Sox-Oct cooperation and assessed the pairing of the high-mobility group (HMG) domains of 11 Sox TFs with Oct4 on a series of composite DNA elements. This way, we clustered Sox proteins according to their dimerization preferences illustrating that Sox HMG domains evolved different propensities to cooperate with Oct4. Sox2, Sox14, Sox21 and Sox15 strongly cooperate on the canonical element but compete with Oct4 on a recently discovered compressed element. Sry also cooperates on the canonical element but binds additively to the compressed element. In contrast, Sox17 and Sox4 cooperate more strongly on the compressed than on the canonical element. Sox5 and Sox18 show some cooperation on both elements, whereas Sox8 and Sox9 compete on both elements. Testing rationally mutated Sox proteins combined with structural modeling highlights critical amino acids for differential Sox-Oct4 partnerships and demonstrates that the cooperativity correlates with the efficiency in producing induced pluripotent stem cells. Our results suggest selective Sox-Oct partnerships in genome regulation and provide a toolset to study protein cooperation on DNA.


Asunto(s)
Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factores de Transcripción SOX/química , Factores de Transcripción SOX/metabolismo , Secuencia de Aminoácidos , Animales , Unión Competitiva , ADN/metabolismo , Dimerización , Ratones , Datos de Secuencia Molecular , Mutación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Factores de Transcripción SOX/genética , Alineación de Secuencia
4.
Biochemistry ; 50(19): 4029-37, 2011 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-21488690

RESUMEN

The unique structural properties of the ferritin protein cages have provided impetus to focus on the methodical study of these self-assembling nanosystems. Among these proteins, Escherichia coli bacterioferritin (EcBfr), although architecturally very similar to other members of the family, shows structural instability and an incomplete self-assembly behavior by populating two oligomerization states. Through computational analysis and comparison to its homologues, we have found that this protein has a smaller than average dimeric interface on its 2-fold symmetry axis mainly because of the existence of an interfacial water pocket centered around two water-bridged asparagine residues. To investigate the possibility of engineering EcBfr for modified structural stability, we have used a semiempirical computational method to virtually explore the energy differences of the 480 possible mutants at the dimeric interface relative to that of wild-type EcBfr. This computational study also converged on the water-bridged asparagines. Replacing these two asparagines with hydrophobic amino acids resulted in proteins that folded into α-helical monomers and assembled into cages as evidenced by circular dichroism and transmission electron microscopy. Both thermal and chemical denaturation confirmed that, in all cases, these proteins, in agreement with the calculations, possessed increased stability. One of the three mutations shifts the population in favor of the higher-order oligomerization state in solution as evidenced by both size exclusion chromatography and native gel electrophoresis. These results taken together suggest that our low-level design was successful and that it may be possible to apply the strategy of targeting water pockets at protein--protein interfaces to other protein cage and self-assembling systems. More generally, this study further demonstrates the power of jointly employing in silico and in vitro techniques to understand and enhance biostructural energetics.


Asunto(s)
Proteínas de Escherichia coli/química , Metaloproteínas/química , Nanoestructuras/química , Dominios y Motivos de Interacción de Proteínas , Agua/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/ultraestructura , Biología Computacional/métodos , Grupo Citocromo b/química , Grupo Citocromo b/genética , Grupo Citocromo b/ultraestructura , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/ultraestructura , Ferritinas/química , Ferritinas/genética , Ferritinas/ultraestructura , Interacciones Hidrofóbicas e Hidrofílicas , Metaloproteínas/genética , Metaloproteínas/ultraestructura , Microscopía Electrónica de Transmisión , Mutagénesis Sitio-Dirigida , Nanoestructuras/ultraestructura , Dominios y Motivos de Interacción de Proteínas/genética , Multimerización de Proteína/genética , Estabilidad Proteica , Estructura Cuaternaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA