Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 506
Filtrar
1.
Stem Cell Rev Rep ; 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39243336

RESUMEN

Mesenchymal stem cells have made remarkable progress in recent years. Many studies have reported that human umbilical cord mesenchymal stem cells (hUC-MSCs) have no toxicity, but thromboembolism appeared in patients treated with hUC-MSCs. Therefore, people are still worried about the safety of clinical application. The study aims to determine the safety, potential toxic mechanism and biodistribution of hUC-MSCs. F344RG rats were given 5 or 50 million cells/kg of hUC-MSCs by single administration in compliance with Good Laboratory Practice standards. Standard toxicity was performed. RNA sequencing was then performed to explore the potential toxic mechanisms. In parallel, the biodistribution of hUC-MSCs was examined. The dose of 5 million cells/kg hUC-MSCs had no obvious toxicity on symptom, weight, food intake, hematology, serum biochemistry, urine biochemistry, cytokines, and histopathology. However, blood-tinged secretions in the urethral orifice and 20% mortality occurred at 50 million cells/kg. Disseminated intravascular coagulopathy (DIC) is the leading cause of death. hUC-MSCs significantly upregulated complement and coagulation cascade pathways gene expression, resulting in DIC. Besides, hUC-MSCs upregulated fibrinolytic system suppressor genes A2m, Serping1 and Serpinf2. hUC-MSCs survived in rats for less than 28 days, no hUC-MSC was detected in tissues outside the lungs. There was no toxicity in F344RG rats at 5 million cells/kg, but some toxicities were detected at 50 million cells/kg. hUC-MSCs significantly upregulated complement and coagulation cascade pathways, upregulated the expression of fibrinolytic system suppressor genes A2m, Serping1 and Serpinf2, to inhibit fibrinolytic system, caused DIC, which provided a new insight into the toxic mechanism of hUC-MSCs.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39254080

RESUMEN

BACKGROUND: The effects of lipid-lowering drugs [including statins, ezetimibe, and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors] on hyperlipidaemia have been established. Some may have treatment effects beyond their reported properties, offering potential opportunities for drug repurposing. Epidemiological studies have reported conflicting findings on the relationship between lipid-lowering medication use and sarcopenia risk. METHODS: We performed a two-sample Mendelian randomization (MR) study to investigate the causal association between the use of genetically proxied lipid-lowering drugs (including statins, ezetimibe, and PCSK9 inhibitors, which use low-density lipoprotein as a biomarker), and sarcopenia risk. The inverse-variance weighting method was used with pleiotropy-robust methods (MR-Egger regression and weighted median) and colocalization as sensitivity analyses. RESULTS: According to the positive control analysis, genetically proxied inhibition in lipid-lowering drug targets was associated with a lower risk of coronary heart disease [PCSK9 (OR, 0.67; 95% CI, 0.61 to 0.72; P = 7.7E-21); 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR; OR, 0.68; 95% CI, 0.57 to 0.82; P = 4.6E-05), and Niemann-Pick C1-like 1 (NPC1L1; OR, 0.53; 95% CI, 0.40 to 0.69; P = 3.3E-06)], consistent with drug mechanistic actions and previous trial evidence. Genetically proxied inhibition of PCSK9 (beta, -0.040; 95% CI, -0.068 to -0.012; P = 0.005) and circulating PCSK9 levels (beta, -0.019; 95% CI, -0.033 to -0.005; P = 0.006) were associated with reduced appendicular lean mass (ALM) with concordant estimates in terms of direction and magnitude. Validation analyses using a second instrument for PCSK9 yielded consistent results in terms of direction and magnitude [(PCSK9 to ALM; beta, -0.052; 95% CI, -0.074 to -0.032; P = 7.1E-7); (PCSK9 protein to ALM; beta, -0.060; 95% CI, -0.106 to -0.014; P = 0.010)]. Genetically proxied inhibition of PCSK9 gene expression in the liver may be associated with reduced ALM (beta, -0.013; 95% CI, -0.035 to 0.009; P = 0.25), consistent with the results of PCSK9 drug-target and PCSK9 protein MR analyses, but the magnitude was less precise. No robust association was found between HMGCR inhibition (beta, 0.048; 95% CI, -0.015 to 0.110; P = 0.14) or NPC1L1 (beta, 0.035; 95% CI, -0.074 to 0.144; P = 0.53) inhibition and ALM, and validation and sensitivity MR analyses showed consistent estimates. CONCLUSIONS: This MR study suggested that PCSK9 is involved in sarcopenia pathogenesis and that its inhibition is associated with reduced ALM. These findings potentially pave the way for future studies that may allow personalized selection of lipid-lowering drugs for those at risk of sarcopenia.

3.
Small ; : e2405950, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39224048

RESUMEN

Ultralight graphene aerogels with high electrical conductivity and superelasticity are demanded yet difficult to produce. A versatile emulsion-based approach is demonstrate to optimize multiscale structure of lightweight, elastic, and conductive graphene aerogels. By constructing Pickering emulsion using graphene oxide (GO), poly (amic acid) (PAA), and octadeyl amine (ODA), micron-level close-pore structure is realized while thermal shrinkage mismatch between GO and PAA creates numerous nanowrinkles during thermal annealing. GO nanosheets are bridged by PAA-derived carbon, enhancing the structural integrity at molecular level. These multiscale structural features facilitate rapid electron transport and efficient load transfer, conferring graphene aerogels with intriguing mechanical and electromagnetic interference (EMI) shielding properties. The emulsion-based graphene aerogel with an ultralow density of ≈3.0 mg cm-3 integrates outstanding electrical conductivity, air-caliber thermal insulation, high EMI shielding effectiveness of 75.0 dB, and 90% strain compressibility with superb fatigue resistance. Intriguingly, thanks to the gel-like rheological behavior of the emulsion, ultralight graphene scaffolds with programmable geometries are obtained by 3D printing. This work provides a general approach for the preparation of ultralight and superelastic graphene aerogels with excellent EMI shielding properties, showing broad application prospects in various fields.

4.
Angew Chem Int Ed Engl ; : e202417149, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39282737

RESUMEN

Stimuli-responsive circularly polarized luminescence (CPL) materials based on cholesteric liquid crystal (CLC) platforms show great promise for applications in information encryption and anticounterfeiting. In this study, we constructed a mercury ion-responsive CPL system in CLCs by controlling the conjugation degree of axially chiral binaphthyl derivatives. Two chiral binaphthyl derivatives (R/S-1 and R/S-2) were initially used as chiral dopants to demonstrate that CPL inversion (glum values from 0.5/-0.44 to -0.53/0.48) in CLCs could be achieved by modulating the conjugation degree of the chiral binaphthyls. Based on this concept, the thioacetal binaphthyl R-2S was developed and used as a mercury-responsive chiral dopant in CLCs. Under Hg ion treatment, the CPL sign inverted (glum value changed from 0.22 to -0.29) due to the transformation of the thioacetal into an aldehyde group. Additionally, the mercury ion-responsive CPL material was applied in information encryption.

5.
J Biol Chem ; : 107780, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39276941

RESUMEN

Resistance to DNA-damaging agents is a major unsolved challenge for breast cancer patients undergoing chemotherapy. Here, we show that elevated expression of transcriptional repressor GATA binding 1 (TRPS1) is associated with lower drug sensitivity, reduced response rate, and poor prognosis in chemotherapy-treated breast cancer patients. Mechanistically, elevated TRPS1 expression promotes hyperactivity of DNA damage repair (DDR) in breast cancer cells. We provide evidence that TRPS1 dynamically localizes to DNA breaks in a Ku70- and Ku80-dependent manner, and that TRPS1 is a new member of the DDR protein family. We also discover that the dynamics of TRPS1 assembly at DNA breaks is regulated by its reversible PARylation in the DDR, and that mutations of the PARylation sites on TRPS1 lead to increased sensitivity to chemotherapeutic drugs. Taken together, our findings provide new mechanistic insights into the DDR and chemoresistance in breast cancer patients and identify TRPS1 as a critical DDR protein. TRPS1 may also be considered as a target to improve chemo-sensitization strategies and, consequently, clinical outcomes for breast cancer patients.

7.
Front Genet ; 15: 1433160, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39188284

RESUMEN

Background: The biochemical and genetic characteristics of four very-long-chain acyl-coenzyme A dehydrogenase deficiency (VLCADD) patients, clarifying their pathogenic genetic factors and evaluating the application value of genetic diagnosis in the early diagnosis of VLCADD, are reported and discussed in this article. Methods: Patients underwent blood tandem mass spectrometry (MS/MS), urine gas chromatography (GC/MS), and high-throughput sequencing technology. New variants were analyzed for pathogenicity using bioinformatics software. Swiss-PdbViewer software was used to predict the effect of variants on the structure of the very-long-chain acyl-CoA dehydrogenase (VLCAD) protein. Result: A total of four VLCADD patients were diagnosed. They revealed elevated levels of C14, C14:1, C14:2, C14:1/C2, C14:1/C10, and C14:1/C12:1. Two patients were early-onset neonatal cases and died during infancy and the neonatal period, respectively. Seven kinds of variants were detected, including four novel variants. Bioinformatics software revealed that the variants were harmful, and the Swiss-PdbViewer results suggest that variation affects protein conformation. Conclusion: This study identified four novel ACADVL gene variants. These findings contribute to the understanding of the genetic basis and pathogenesis of VLCADD. Meanwhile, the study enriches the genetic mutation spectrum and the correlation between genotypes and phenotypes of VLCADD, indicating that genetic diagnosis plays an essential role in the early diagnosis and treatment of VLCADD.

8.
ISA Trans ; 153: 28-40, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39179481

RESUMEN

This paper addresses the secure quasi-synchronization issue of heterogeneous complex networks (HCNs) under aperiodic denial-of-service (DoS) attacks with dynamic event-triggered impulsive scheme (ETIS). The heterogeneity of networks and the aperiodic DoS attacks, which hinder communication channels and synchronization goals, present challenges to the analysis of secure quasi-synchronization. The ETIS leverages impulsive control and dynamic event-triggered scheme (ETS) to handle the network heterogeneity and the DoS attacks. We give specific bounds on the attack duration and frequency that the network can endure, and obtain synchronization criteria that relate to event parameters, attack duration, attack frequency, and impulsive gain by the variation of parameter formula and recursive methods. Moreover, we prove that the dynamic ETS significantly reduces the controller updates, saves energy without sacrificing the system decay rate, and prevents the Zeno phenomenon. Finally, we validate our control scheme with a numerical example.

9.
EuroIntervention ; 20(15): e937-e947, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39099379

RESUMEN

BACKGROUND: Compared with intravascular ultrasound guidance, there is limited evidence for optical coherence tomography (OCT) guidance during primary percutaneous coronary intervention (pPCI) in ST-segment elevation myocardial infarction (STEMI) patients. AIMS: We investigated the role of OCT in guiding a reperfusion strategy and improving the long-term prognosis of STEMI patients. METHODS: All patients who were diagnosed with STEMI and who underwent pPCI between January 2017 and December 2020 were enrolled and divided into OCT-guided versus angiography-guided cohorts. They had routine follow-up for up to 5 years or until the time of the last known contact. All-cause death and cardiovascular death were designated as the primary and secondary endpoints, respectively. RESULTS: A total of 3,897 patients were enrolled: 2,696 (69.2%) with OCT guidance and 1,201 (30.8%) with angiographic guidance. Patients in the OCT-guided cohort were less often treated with stenting during pPCI (62.6% vs 80.2%; p<0.001). The 5-year cumulative rates of all-cause mortality and cardiovascular mortality in the OCT-guided cohort were 10.4% and 8.0%, respectively, significantly lower than in the angiography-guided cohort (19.0% and 14.1%; both log-rank p<0.001). All 4 multivariate models showed that OCT guidance could significantly reduce 5-year all-cause mortality (hazard ratio [HR] in model 4: 0.689, 95% confidence interval [CI]: 0.551-0.862) and cardiovascular mortality (HR in model 4: 0.692, 95% CI: 0.536-0.895). After propensity score matching, the benefits of OCT guidance were consistent in terms of all-cause mortality (HR: 0.707, 95% CI: 0.548-0.913) and cardiovascular mortality (HR: 0.709, 95% CI: 0.526-0.955). CONCLUSIONS: Compared with angiography alone, OCT guidance may change reperfusion strategies and lead to better long-term survival in STEMI patients undergoing pPCI. Findings in the current observational study should be further corroborated in randomised trials.


Asunto(s)
Intervención Coronaria Percutánea , Infarto del Miocardio con Elevación del ST , Tomografía de Coherencia Óptica , Humanos , Intervención Coronaria Percutánea/métodos , Intervención Coronaria Percutánea/efectos adversos , Intervención Coronaria Percutánea/mortalidad , Masculino , Femenino , Persona de Mediana Edad , Infarto del Miocardio con Elevación del ST/terapia , Infarto del Miocardio con Elevación del ST/mortalidad , Infarto del Miocardio con Elevación del ST/diagnóstico por imagen , Infarto del Miocardio con Elevación del ST/cirugía , Anciano , Estudios de Seguimiento , Resultado del Tratamiento , Angiografía Coronaria
10.
Inflammation ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39052180

RESUMEN

Acute respiratory distress syndrome (ARDS) and acute lung injury (ALI) are life-threatening diseases. Neutrophil extracellular traps (NETs) play a key role in lung damage. Geranylgeranyl diphosphate synthase (GGPPS) is associated with the development of inflammatory diseases. We aimed to explore the role of GGPPS in NETs formation in ARDS/ALI. First, lung pathological changes in lipopolysaccharide (LPS)-induced ALI mice after myeloid-specific GGPPS deletion were evaluated. The level of NETs formation was analyzed by immunofluorescence, PicoGreen assay and Western blotting. Next, we determined the role of GGPPS in NETs formation and underlying mechanisms using immunofluorescence, flow cytometry, DCFH-DA, and SYTOX GREEN staining in vitro. Finally, the correlation between GGPPS expression incirculating neutrophils and dsDNA levels in plasma was evaluated. Myeloid-specific GGPPS deletion mice showed increased NETs deposition in lung tissue and aggravated histopathological damage of lung tissue. In vitro, GGPPS deficiency in neutrophils resulted in increased NETs formation by Phorbol-12-myristate-13-acetate (PMA), which was reversed by Geranylgeranyl diphosphate (GGPP). In addition, inhibitors blocking protein kinase C (PKC) and NADPH-oxidase (NOX) decreased NETs formation induced by GGPPS deletion. Importantly, GGPPS expression in circulating neutrophils was decreased in ARDS patients compared with the healthy control, and the level of dsDNA in plasma of ARDS patients was negatively correlated with the GGPPS expression. Taken together, GGPPS deficiency in neutrophils aggravates LPS-induced lung injury by promoting NETs formation via PKC/NOX signaling. Thus, neutrophil GGPPS could be a key therapeutic target for ARDS.

11.
iScience ; 27(7): 110210, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39055914

RESUMEN

Pseudomonas aeruginosa is a common opportunistic pathogen. The potential efficacy of phage therapy has attracted the attention of researchers, but efficient gene-editing tools are lacking, limiting the study of their biological properties. Here, we designed a type V CRISPR-Cas12a system for the gene editing of P. aeruginosa phages. We first evaluated the active cutting function of the CRISPR-Cas12a system in vitro and discovered that it had a higher gene-cutting efficiency than the type II CRISPR-Cas9 system in three different P. aeruginosa phages. We also demonstrated the system's ability to precisely edit genes in Escherichia coli phages, Salmonella phages, and P. aeruginosa phages. Using the aforementioned strategies, non-essential P. aeruginosa phage genes can be efficiently deleted, resulting in a reduction of up to 5,215 bp (7.05%). Our study has provided a rapid, efficient, and time-saving tool that accelerates progress in phage engineering.

12.
Discov Oncol ; 15(1): 298, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039334

RESUMEN

Ataxin-2 (ATXN2) was originally discovered in the context of spinocerebellar ataxia type 2 (SCA2), but it has become a key player in various neurodegenerative diseases. This review delves into the multifaceted roles of ATXN2 in human diseases, revealing its diverse molecular and cellular pathways. The impact of ATXN2 on diseases extends beyond functional outcomes; it mainly interacts with various RNA-binding proteins (RBPs) to regulate different stages of post-transcriptional gene expression in diseases. With the progress of research, ATXN2 has also been found to play an important role in the development of various cancers, including breast cancer, gastric cancer, pancreatic cancer, colon cancer, and esophageal cancer. This comprehensive exploration underscores the crucial role of ATXN2 in the pathogenesis of diseases and warrants further investigation by the scientific community. By reviewing the latest discoveries on the regulatory functions of ATXN2 in diseases, this article helps us understand the complex molecular mechanisms of a series of human diseases related to this intriguing protein.

13.
RSC Adv ; 14(33): 23840-23852, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39081658

RESUMEN

The molecular motion trajectories of silicone rubber foam (SRF) at various vinyl silicone oil viscosities were studied via molecular dynamics (MD) simulation from the perspective of all atomic molecules. The influence of different viscosities of vinyl silicone oil on interaction, compatibility, and aggregation degree of molecules was determined based on the mean square displacement, diffusion coefficient, binding energy, solubility parameter, radial distribution function, and radius of gyration. The mechanical properties of the SRF were also experimentally verified. Results revealed that as the viscosity of vinyl silicone oil increased, the mean square displacement, fractional free volume, diffusion coefficient, and solubility parameter of the system decreased, whereas its larger radius of gyration increased. Moreover, the radial distribution function showed a weaker relative interaction between molecular chains. The calculated binding energy demonstrated that the system had better compatibility at a viscosity of 0.45 Pa s. This study provided a deeper insight into the relation between the viscosity of vinyl silicone oil and mechanical properties of the SRF. As the viscosity of vinyl silicone oil increased, the changing trend in MD simulation results of elastic modulus, shear modulus, bulk modulus, and Poisson's ratio was consistent with the experimental results. The MD simulations can promote theoretical predictions and scientific basis for the design of the SRF with desired performances.

16.
Heliyon ; 10(10): e30902, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38826750

RESUMEN

Background: Radiotherapy has become a standard treatment for chest tumors, but a common complication of radiotherapy is radiation lung injury. Currently, there is still a lack of effective treatment for radiation lung injury. Methods: A mouse model of radioactive lung injury (RILI) was constructed and then treated with different cycles of hydrogen inhalation. Lung function tests were performed to detect changes in lung function.HE staining was used to detect pathological changes in lung tissue. Immunofluorescence staining was used to detect the polarization of macrophages in lung tissue. Immunohistochemistry was used to detect changes in cytokine expression in lung tissues. Western Blot was used to detect the expression of proteins related to the NF-κB signalling pathway. Results: Lung function test results showed that lung function decreased in the model group and improved in the treatment group.HE staining showed that inflammatory response was evident in the model group and decreased in the treatment group. Immunohistochemistry results showed that the expression of pro-inflammatory factors was significantly higher in the model group, and the expression of pro-inflammatory factors was significantly higher in the treatment group. The expression of pro-inflammatory factors in the treatment group was significantly lower than that in the model group, and the expression of anti-inflammatory factors in the treatment group was higher than that in the model group. Immunofluorescence showed that the expression of M1 subtype macrophages was up-regulated in the model group and down-regulated in the treatment group. The expression of M2 subtype macrophages was up-regulated in the treatment group relative to the model group. Western Blot showed that P-NF-κB p65/NF-κB p65 was significantly increased in the model group, and P-NF-κB p65/NF-κB p65 was decreased in the treatment group. Conclusion: Hydrogen therapy promotes macrophage polarization from M1 to M2 subtypes by inhibiting the NF-κB signalling pathway, thereby attenuating the inflammatory response to radiation lung injury.

18.
Diabetes Care ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861482

RESUMEN

OBJECTIVE: To determine the association between maternal blood glucose patterns throughout pregnancy and neonatal amino acids and acylcarnitines. RESEARCH DESIGN AND METHODS: We conducted a prospective cohort study involving 11,457 singleton pregnant women without preexisting diabetes from the Beijing Birth Cohort Study, along with their neonates born between July 2021 and October 2022 in Beijing, China. Distinct maternal glucose trajectories were identified using a latent class model based on blood glucose levels across the three trimesters, and their association with neonatal circulating metabolites, including 11 amino acids and 33 acylcarnitines, was examined, adjusting for potential confounding factors. RESULTS: Three distinct groups of maternal glucose trajectories were identified: consistent normoglycemia (n = 8,648), mid-to-late gestational hyperglycemia (n = 2,540), and early-onset hyperglycemia (n = 269). Mid-to-late gestational hyperglycemia was associated with decreased levels of amino acids (alanine, arginine, ornithine, and proline) involved in the arginine and proline metabolism and urea cycle pathway, as well as increased levels of C4DC+C5-OH and decreased level of C6DC and C10:1. Early-onset hyperglycemia was associated with elevated levels of free acylcarnitine and C4DC+C5-OH and a decreased level of C10:1, involved in the fatty acid oxidation pathway. However, these associations were primarily observed in male neonates rather than in female neonates. CONCLUSIONS: Our findings revealed a significant link between maternal glucose trajectories throughout pregnancy and neonatal arginine and proline metabolism, urea cycle pathway, and fatty acid oxidation pathway. These results highlight the importance of maintaining optimal blood glucose levels throughout pregnancy to promote healthy neonatal metabolic outcomes.

19.
Open Life Sci ; 19(1): 20220874, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38840891

RESUMEN

Lung cancer (LC) is regarded as a fatal cancer, and insulin-like growth factor 1 (IGF1) and its receptor (IGF1R) have been found to play a key role in regulating tumor glycolytic metabolism. The aim of this study is to investigate LC proliferation regulated by metabolite-mediated IGF1R lactylation. IGF1R was highly expressed in LC tissues and cells, and the effects of IGF1R on protein stability were inhibited by Lactate dehydrogenase A (LDHA) inhibition. Moreover, the tightness of IGF1R binding to IGF1 was also enhanced by exogenous lactic acid but suppressed by LDHA silencing, while cell viability and proliferation were promoted by over-expression of IGF1R. Exogenous lactic acid further exacerbated the effects of the IGF1R gene, while LDHA knocking down reduced the IGF1R-induced malignant behaviors. The IGF1R and exogenous lactic acid were also found to increase extracellular acidification rate (ECAR) and decrease oxygen consumption rate to regulate glycolysis, which was inhibited by LDHA deficiency in LC cells. The study concluded that IGF1R-mediated aggressive behaviors of LC cells were associated with higher levels of IGF1R lactylation. Moreover, lactic acid can improve the protein stability of the IGF1R oncogene, thus promoting glycolysis and generating lactic acid, forming a closed loop. Therefore, targeting IGF1R is envisaged to provide a novel strategy for developing therapeutic agents against LC.

20.
Pharmacol Res ; 206: 107271, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38906202

RESUMEN

Colorectal cancer is the second most prevalent and deadly cancer worldwide. The emergence of immune checkpoint therapy has provided a revolutionary strategy for the treatment of solid tumors. However, less than 5 % of colorectal cancer patients respond to immune checkpoint therapy. Thus, it is of great scientific significance to develop "potentiators" for immune checkpoint therapy. In this study, we found that knocking down different DNMT and HDAC isoforms could increase the expression of IFNs in colorectal cancer cells, which can enhance the effectiveness of immune checkpoint therapy. Therefore, the combined inhibition of DNMT and HDAC cloud synergistically enhance the effect of immunotherapy. We found that dual DNMT and HDAC inhibitors C02S could inhibit tumor growth in immunocompetent mice but not in immunocompromised nude mice, which indicates that C02S exerts its antitumor effects through the immune system. Mechanistically, C02S could increase the expression of ERVs, which generated the intracellular levels of dsRNA in tumor cells, and then promotes the expression of IFNs through the RIG-I/MDA5-MAVS signaling pathway. Moreover, C02S increased the immune infiltration of DCs and T cells in microenvironment, and enhanced the efficacy of anti-PD-L1 therapy in MC38 and CT26 mice model. These results confirmed that C02S can activate IFNs through the RIG-I/MDA5-MAVS signaling pathway, remodel the tumor immune microenvironment and enhance the efficacy of immune checkpoint therapy, which provides new evidence and solutions for the development of "potentiator" for colorectal cancer immunotherapy.


Asunto(s)
Antígeno B7-H1 , Neoplasias Colorrectales , Inhibidores de Histona Desacetilasas , Inhibidores de Puntos de Control Inmunológico , Microambiente Tumoral , Animales , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Humanos , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/metabolismo , Antígeno B7-H1/inmunología , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Ratones , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Ratones Desnudos , Línea Celular Tumoral , Ratones Endogámicos BALB C , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Femenino , ADN (Citosina-5-)-Metiltransferasas/antagonistas & inhibidores , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA