Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 341: 140038, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37660797

RESUMEN

Compared with the traditional wastewater treatment technology, semiconductor photocatalysis is a rapidly emerging environment-friendly and efficient Advanced Oxidation Process for degradation of refractory organic contaminants. Single-component semiconductor photocatalysts exhibit poor photocatalytic performance and cannot meet the requirements of wastewater treatment. The combination of semiconductor photocatalysts and Graphene can effectively improve the photocatalytic activity and stability of semiconductor photocatalysts. This review focuses on the synergistic effect of several types of semiconductors with Graphene for photocatalytic degradation of organic pollutants. After a brief introduction of the photodegradation mechanism of semiconductor materials and the basic description of Graphene, the synthesis, characterization and degradation performance of various Graphene-based semiconductor photocatalysts are emphatically introduced.


Asunto(s)
Contaminantes Ambientales , Grafito , Contaminación Ambiental , Semiconductores , Tecnología
2.
Adv Mater ; 35(3): e2208132, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36331052

RESUMEN

Photocatalytic CO2 reduction to high value-added C2 products (e.g., C2 H4 ) is of considerable interest but challenging. The C2 H4 product selectivity strongly hinges on the intermediate energy levels in the CO2 reduction pathway. Herein, Cu-N4 sites anchored phosphorus-modulated carbon nitride (CuACs/PCN) is designed as a photocatalyst to tailor the intermediate energy levels in the the C2 H4 formation reaction pathway for realizing its high production with tunable selectivity. Theoretical calculations combined with experimental data demonstrate that the formation of the C-C coupling intermediates can be realized on Cu-N4 sites and the surrounding doped P facilitates the production of C2 H4 . Thus, CuACs/PCN exhibits a high C2 H4 selectivity of 53.2% with a yielding rate of 30.51 µmol g-1 . The findings reveal the significant role of the coordination environment and surrounding microenvironment of Cu single atoms in C2 H4 formation and offer an effective approach for highly selective CO2 photoreduction to produce C2 H4 .

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA