Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4748, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834585

RESUMEN

Non-self recognition is a fundamental aspect of life, serving as a crucial mechanism for mitigating proliferation of molecular parasites within fungal populations. However, studies investigating the potential interference of plants with fungal non-self recognition mechanisms are limited. Here, we demonstrate a pronounced increase in the efficiency of horizontal mycovirus transmission between vegetatively incompatible Sclerotinia sclerotiorum strains in planta as compared to in vitro. This increased efficiency is associated with elevated proline concentration in plants following S. sclerotiorum infection. This surge in proline levels attenuates the non-self recognition reaction among fungi by inhibition of cell death, thereby facilitating mycovirus transmission. Furthermore, our field experiments reveal that the combined deployment of hypovirulent S. sclerotiorum strains harboring hypovirulence-associated mycoviruses (HAVs) together with exogenous proline confers substantial protection to oilseed rape plants against virulent S. sclerotiorum. This unprecedented discovery illuminates a novel pathway by which plants can counteract S. sclerotiorum infection, leveraging the weakening of fungal non-self recognition and promotion of HAVs spread. These promising insights provide an avenue to explore for developing innovative biological control strategies aimed at mitigating fungal diseases in plants by enhancing the efficacy of horizontal HAV transmission.


Asunto(s)
Ascomicetos , Virus Fúngicos , Enfermedades de las Plantas , Prolina , Virus Fúngicos/fisiología , Virus Fúngicos/genética , Prolina/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/virología , Ascomicetos/virología , Ascomicetos/fisiología , Brassica napus/microbiología , Brassica napus/virología , Virulencia , Interacciones Huésped-Patógeno
2.
Arch Virol ; 169(4): 79, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519762

RESUMEN

A novel double-strand RNA (dsRNA) mycovirus, named "Colletotrichum fioriniae alternavirus1" (CfAV1), was isolated from the strain CX7 of Colletotrichum fioriniae, the causal agent of walnut anthracnose. The complete genome of CfAV1 is composed of three dsRNA segments: dsRNA1 (3528 bp), dsRNA2 (2485 bp), and dsRNA3 (2481 bp). The RNA-dependent RNA polymerase (RdRp) is encoded by dsRNA1, while both dsRNA2 and dsRNA3 encode hypothetical proteins. Based on multiple sequence alignments and phylogenetic analysis, CfAV1 is identified as a new member of the family Alternaviridae. This is the first report of an alternavirus that infects the phytopathogenic fungus C. fioriniae.


Asunto(s)
Colletotrichum , Virus Fúngicos , Virus ARN , Filogenia , Genoma Viral , Colletotrichum/genética , Alineación de Secuencia , ARN Bicatenario/genética , ARN Viral/genética , Sistemas de Lectura Abierta
3.
Phytopathology ; 112(11): 2449-2461, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35793152

RESUMEN

Sclerotinia sclerotiorum is a well-known phytopathogenic fungus with a wide host range. Identifying novel mycoviruses in phytopathogenic fungi is necessary to develop novel strategies for plant health protection and contribute to understanding the origin of viruses. Six new mycoviruses with positive single-stranded RNA genomes co-infecting the hypovirulent strain SCH733 of S. sclerotiorum were identified using a metatranscriptomic approach, and their complete genome sequences were molecularly determined. These mycoviruses belong to the following five families: Narnaviridae, Mitoviridae, Deltaflexviridae, Botourmiaviridae, and Ambiguiviridae. Three of these mycoviruses belong to existing International Committee on Taxonomy of Viruses (ICTV)-recognized species. Two of these newly identified mycoviruses have unique genomic features that are significantly different from those of all known mycoviruses. Phylogenetic analysis revealed that these six mycoviruses included close as well as distant relatives of known mycoviruses, thereby providing new insight into virus evolution and classification. Mycovirus horizontal transmission and elimination experiments revealed that Sclerotinia sclerotiorum narnavirus 5 is associated with hypovirulence of S. sclerotiorum, although we have not shown that it is independently responsible for the hypovirulence phenotype. This study broadens the diversity of known mycoviruses infecting S. sclerotiorum and provides a clue toward limiting hypovirulence in S. sclerotiorum.


Asunto(s)
Ascomicetos , Virus Fúngicos , Virus ARN , Virus , Virus ARN Monocatenarios Positivos , Filogenia , Enfermedades de las Plantas/microbiología , Virus Fúngicos/genética , Virus ARN/genética
4.
Arch Virol ; 167(2): 641-644, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35034177

RESUMEN

Colletotrichum camelliae is a widespread filamentous phytopathogenic fungus. In this study, a novel mycovirus designated as "Colletotrichum camelliae botourmiavirus 1" (CcBV1) was isolated from strain ZJQT11 of C. camelliae, and its complete genome sequence was determined. CcBV1 has a genome of 2,506 nucleotides and contains a large open reading frame (ORF) that encodes an RNA-dependent RNA polymerase (RdRp) with 672 amino acids and a predicted molecular mass of 75.23 kDa. A BLASTp search showed that RdRp encoded by CcBV1 is closely related to that of Pyricularia oryzae ourmia-like virus 1 with 73.22% identity. Phylogenetic analysis indicated that CcBV1 clustered in the penoulivirus clade within the family Botourmiaviridae. To the best of our knowledge, this is the first report of a penoulivirus in C. camelliae.


Asunto(s)
Colletotrichum , Virus Fúngicos , Virus ARN , Colletotrichum/genética , Virus Fúngicos/genética , Genoma Viral , Sistemas de Lectura Abierta , Filogenia , Enfermedades de las Plantas , Virus ARN/genética , ARN Viral/genética
5.
Arch Virol ; 166(12): 3487-3492, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34623502

RESUMEN

A novel double-stranded RNA virus was isolated and identified from Beauveria bassiana Vuillemin, derived from the muscardine cadaver of an Ostrinia furnacalis larva in China. The virus contains six dsRNAs, and each viral dsRNA contains only one open reading frame (ORF). As in other polymycoviruses, dsRNA1 encodes an RNA-dependent RNA polymerase (RdRp), dsRNA3 encodes a methyltransferase (MTR), and dsRNA4 encodes a proline-alanine-serine-rich protein. A BLASTp search revealed that the viral RdRp domain showed 79.43%, 79.04%, and 59.05% sequence identity to Beauveria bassiana polymycovirus 2 and 3 (BbPmV-2, BbPmV-3) and Magnaporthe oryzae polymycovirus 1 (MoPmV-1), respectively. Phylogenetic analysis based on RdRp sequences showed that the phylogenetically closest relatives of this virus are BbPmV-2, BbPmV-3, and MoPmV-1. This virus, along with previously ill-defined polymycoviruses (BbPmV-2 and BbPmV-3), appears to belong to an as-yet-unestablished species. The findings further suggest that the virus is a new member of the genus Polymycovirus within the family Polymycoviridae, and we have named it "Beauveria bassiana polymycovirus 4" (BbPmV-4). However, the sixth dsRNA is a defective RNA with the same sequence as that of dsRNA4 except for a deletion of 312 bp from nt 185 to nt 496, but it still contains a complete ORF. To our knowledge, this is the first report of the existence of a defective RNA in a polymycovirus.


Asunto(s)
Beauveria , Virus ARN , Beauveria/genética , Genoma Viral , Sistemas de Lectura Abierta , Filogenia , Virus ARN/genética , ARN Bicatenario/genética , ARN Viral/genética
6.
Arch Virol ; 166(12): 3427-3431, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34536127

RESUMEN

Here, we report the discovery and molecular characterization of a novel mitovirus isolated from tissues of Lagenaria siceraria, named "Lagenaria siceraria associated mitovirus 1" (LsaMV1). Next-generation sequencing and adapter-ligation-mediated amplification were used to obtain the full-length genome sequence of LsaMV1. The genome of LsaMV1 is 3,098 nucleotides (nt) long and contains an opening reading frame (ORF) encoding a putative RNA-dependent RNA polymerase (RdRP). Homology searches and phylogenetic analysis of the 855-aa RdRP suggested that LsaMV1 is a member of a new species in the family Mitoviridae. This is the first report of a member of the family Mitoviridae associated with the important summer vegetable bottle gourd.


Asunto(s)
Genoma Viral , Virus ARN , Secuenciación de Nucleótidos de Alto Rendimiento , Sistemas de Lectura Abierta , Filogenia , Virus ARN/genética , ARN Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA