RESUMEN
Pathogenic protists are a group of organisms responsible for causing a variety of human diseases including malaria, sleeping sickness, Chagas disease, leishmaniasis, and toxoplasmosis, among others. These diseases, which affect more than one billion people globally, mainly the poorest populations, are characterized by severe chronic stages and the lack of effective antiparasitic treatment. Parasitic protists display complex life-cycles and go through different cellular transformations in order to adapt to the different hosts they live in. Autophagy, a highly conserved cellular degradation process, has emerged as a key mechanism required for these differentiation processes, as well as other functions that are crucial to parasite fitness. In contrast to yeasts and mammals, protist autophagy is characterized by a modest number of conserved autophagy-related proteins (ATGs) that, even though, can drive the autophagosome formation and degradation. In addition, during their intracellular cycle, the interaction of these pathogens with the host autophagy system plays a crucial role resulting in a beneficial or harmful effect that is important for the outcome of the infection. In this review, we summarize the current state of knowledge on autophagy and other related mechanisms in pathogenic protists and their hosts. We sought to emphasize when, how, and why this process takes place, and the effects it may have on the parasitic cycle. A better understanding of the significance of autophagy for the protist life-cycle will potentially be helpful to design novel anti-parasitic strategies.
RESUMEN
Three different DNA fingerprinting techniques, the mobile genetic element (MGE)-PCR, simple sequence repeat (SSR)-PCR and random amplified polymorphic DNA (RAPD)-PCR, were used to define a large set of genetic markers to study genetic similarity within and among Trypanosoma brucei, Trypanosoma equiperdum and Trypanosoma evansi strains (n=18) from China, Africa and South America and to investigate their genetic relationships. Using the three fingerprinting techniques, >890 bands (ranging in size from 0.2 to 2kb) were defined for all 18 strains of Trypanosoma. Within each of the strains, 39-59 bands were defined. The similarity coefficients between strains ranged from approximately 41 to 94%, with a mean of 65%. There was more genetic similarity among strains within T. evansi (mean of approximately 79%) compared with T. equiperdum ( approximately 65%) and T. brucei ( approximately 59%). The similarity coefficient data were used to construct the dendrogram, which revealed that (irrespective of species) the majority of strains from China and South America grouped together to the exclusion of those from Africa. The exceptions were a T. brucei strain from Africa and a T. equiperdum strain of unknown origin. Hence, employing data sets generated using the three different fingerprinting methods, it was not possible to unequivocally distinguish among T. brucei, T. evansi and T. equiperdum, although there was a tendency for T. evansi strains to group together to the exclusion of T. brucei. The findings provide support for the hypothesis that T. evansi originated from a mutated form of T. equiperdum and stimulate further investigations of the genetic make-up and evolution of members of the subgenus Trypanozoon.