Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(3): e14228, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36938387

RESUMEN

Euphrasia nankotaizanensis (Orobanchaceae) is a rare alpine herb that is endemic to Taiwan. Only four small populations remain in Xue, Nanhu, and Cilai Mountains of Taiwan. The distribution of alpine herbs is severely threatened by climate change, which influences genetic variation and population structure. In this study, we investigated the effects of the natural isolation of alpine habitats on the genetic diversity and geographic structure of populations of E. nankotaizanensis using chloroplast (cp) and nuclear DNA (nrDNA) markers. We found lower levels of genetic diversity in E. nankotaizanensis than in other alpine plants and little to no genetic variation within populations, which could be mainly attributed to the small population size and genetic drift. Only one nrDNA haplotype was present in each population. The lack of monophyly of the four populations in cpDNA probably resulted from lineage sorting or occasional long-distance seed dispersal. Phylogeographic analysis suggested that Nanhu Mountain was probably a refugium over the glacial maxima, agreeing with the potential refugia in central Taiwan. The STRUCTURE and AMOVA analyses revealed significant genetic differentiation in nrDNA among the mountains, which resulted from geographical isolation among these mountains. Estimates of the effective population size (Ne) and demography reflected lower Ne values and a recent population decline, probably implying a greater extinction risk for E. nankotaizanensis. We observed genetic depletion and considerable genetic differentiation among mountain populations, which should be considered in future conservation efforts for this species. In addition, this study provides important insights into the long-term potential of alpine herbs in Taiwan, which are useful for a better prediction of their responses to future climate change.

2.
Molecules ; 21(1): 67, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26751439

RESUMEN

Amentotaxus, a genus of Taxaceae, is an ancient lineage with six relic and endangered species. Four Amentotaxus species, namely A. argotaenia, A. formosana, A. yunnanensis, and A. poilanei, are considered a species complex because of their morphological similarities. Small populations of these species are allopatrically distributed in Asian forests. However, only a few codominant markers have been developed and applied to study population genetic structure of these endangered species. In this study, we developed and characterized polymorphic expressed sequence tag-simple sequence repeats (EST-SSRs) from the transcriptome of A. formosana. We identified 4955 putative EST-SSRs from 68,281 unigenes as potential molecular markers. Twenty-six EST-SSRs were selected for estimating polymorphism and transferability among Amentotaxus species, of which 23 EST-SSRs were polymorphic within Amentotaxus species. Among these, the number of alleles ranged from 1-4, the polymorphism information content ranged from 0.000-0.692, and the observed and expected heterozygosity were 0.000-1.000 and 0.080-0.740, respectively. Population genetic structure analyses confirmed that A. argotaenia and A. formosana were separate species and A. yunnanensis and A. poilanei were the same species. These novel EST-SSRs can facilitate further population genetic structure research of Amentotaxus species.


Asunto(s)
ADN de Plantas/genética , Etiquetas de Secuencia Expresada , Genoma de Planta , Polimorfismo Genético , Taxaceae/genética , Transcriptoma , Alelos , Especies en Peligro de Extinción , Marcadores Genéticos , Heterocigoto , Secuenciación de Nucleótidos de Alto Rendimiento , Repeticiones de Microsatélite , Filogenia , Taxaceae/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA