RESUMEN
BACKGROUND: Magnetic resonance imaging has provided a wealth of information on altered brain activations and structures in individuals addicted to cocaine. However, few studies have considered the influence of age and alcohol use on these changes. METHODS: We examined gray matter volume with voxel based morphometry (VBM) and low frequency fluctuation (LFF) of BOLD signals as a measure of cerebral activity of 84 cocaine dependent (CD) and 86 healthy control (HC) subjects. We performed a covariance analysis to account for the effects of age and years of alcohol use. RESULTS: Compared to HC, CD individuals showed decreased gray matter (GM) volumes in frontal and temporal cortices, middle/posterior cingulate cortex, and the cerebellum, at p<0.05, corrected for multiple comparisons. The GM volume of the bilateral superior frontal gyri (SFG) and cingulate cortices were negatively correlated with years of cocaine use, with women showing a steeper loss in the right SFG in association with duration of use. In contrast, the right ventral putamen showed increased GM volume in CD as compared to HC individuals. Compared to HC, CD individuals showed increased fractional amplitude of LFF (fALFF) in the thalamus, with no significant overlap with regions showing GM volume loss. CONCLUSIONS: These results suggested that chronic cocaine use is associated with distinct changes in cerebral structure and activity that can be captured by GM volume and fALFF of BOLD signals.
Asunto(s)
Corteza Cerebral/patología , Trastornos Relacionados con Cocaína/diagnóstico , Imagen Eco-Planar , Caracteres Sexuales , Adolescente , Adulto , Trastornos Relacionados con Cocaína/epidemiología , Imagen Eco-Planar/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Tiempo , Adulto JovenRESUMEN
Alcohol use and misuse is known to involve structural brain changes. Numerous imaging studies have examined changes in gray matter (GM) volumes in dependent drinkers, but there is little information on whether non-dependent drinking is associated with structural changes and whether these changes are related to psychological factors-such as alcohol expectancy-that influence drinking behavior. We used voxel-based morphometry (VBM) to examine whether the global positive scale of alcohol expectancy, as measured by the Alcohol Expectancy Questionnaire-3, is associated with specific structural markers and whether such markers are associated with drinking behavior in 113 adult non-dependent drinkers (66 women). Alcohol expectancy is positively correlated with GM volume of left precentral gyrus (PCG) in men and women combined and bilateral superior frontal gyri (SFG) in women, and negatively correlated with GM volume of the right ventral putamen in men. Furthermore, mediation analyses showed that the GM volume of PCG mediate the correlation of alcohol expectancy and the average number of drinks consumed per occasion and monthly total number of drinks in the past year. When recent drinking was directly accounted for in multiple regressions, GM volume of bilateral dorsolateral prefrontal cortices correlated positively with alcohol expectancy in the combined sample. To our knowledge, these results are the first to identify the structural brain correlates of alcohol expectancy and its mediation of drinking behaviors. These findings suggest that more studies are needed to investigate increased GM volume in the frontal cortices as a neural correlate of alcohol expectancy.
Asunto(s)
Consumo de Bebidas Alcohólicas/patología , Anticipación Psicológica/fisiología , Lóbulo Frontal/patología , Sustancia Gris/patología , Adulto , Consumo de Bebidas Alcohólicas/psicología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Caracteres SexualesRESUMEN
BACKGROUND: Nicotine dependence is difficult to treat, and the biological mechanisms that are involved are not entirely clear. There is an urgent need to develop better drugs and more effective treatments for clinical practice. A critical step towards accelerating progress in medication development is to understand the neurobehavioral effects of pharmacotherapies on clinical characteristics associated with nicotine dependence. OBJECTIVES: This review sought to summarize the functional magnetic resonance imaging (fMRI) literature on smoking cessation with the aim to better understand the neural processes underlying the effects of nicotinic and non-nicotinic pharmacological smoking cessation treatments on specific symptoms of nicotine dependence and withdrawal. DATA SOURCES: We conducted a search in Pubmed, Web of Science and PsycINFO databases with the keywords 'fMRI' or 'functional magnetic resonance imaging' and 'tobacco' or 'nicotine' or 'smok*'. The date of the most recent search was May 2012. STUDY ELIGIBILITY CRITERIA, PARTICIPANTS AND INTERVENTIONS: The original studies that were included were those of smokers or nicotine-dependent individuals, published in the English language, with pharmacological treatment for nicotine dependence and use of fMRI with blood oxygen level-dependent (BOLD) imaging or continuous arterial spin labelling (CASL). No date limit was applied. STUDY APPRAISAL AND SYNTHESIS METHODS: Two of the authors read the abstracts of all studies found in the search (n = 1,260). The inclusion and exclusion criteria were applied, and 1,224 articles were excluded. In a second step, the same authors read the remaining 36 studies. Nineteen of the 36 articles were excluded. The results were tabulated by the number of individuals and their mean age, the main sample characteristics, smoking status, study type and methodology, and the main fMRI findings. RESULTS: Seventeen original fMRI studies involving pharmacological treatment of smokers were selected. The anterior and posterior cingulate cortex, medial and lateral orbitofrontal cortex, ventral striatum, amygdala, thalamus and insula are heavily involved in the maintenance of smoking and nicotine withdrawal. The effects of varenicline and bupropion in alleviating withdrawal symptoms and decreasing smoking correlated with modulation of the activities of these areas. Nicotine replacement therapy seems to improve cognitive symptoms related to withdrawal especially by modulating activities of the default-network regions; however, nicotine replacement does not necessarily alter the activities of neural circuits, such as the cingulate cortices, that are associated with nicotine addiction. LIMITATIONS: The risk of bias in individual studies, and across studies, was not assessed, and no method of handling data and combining results of studies was carried out. Most importantly, positron emission tomography (PET) studies were not included in this review. CONCLUSIONS AND IMPLICATION OF KEY FINDINGS: fMRI studies delineate brain systems that contribute to cognitive deficits and reactivity to stimuli that generate the desire to smoke. Nicotinic and non-nicotinic pharmacotherapy may reduce smoking via distinct neural mechanisms of action. These findings should contribute to the development of new medications and discovery of early markers of the therapeutic response of cigarette smokers.