Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(17)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39274747

RESUMEN

The strain-hardening geopolymer composite (SHGC) is a new type of fiber concrete with excellent ductility and environmental friendliness. However, the high cost of fibers greatly limits its widespread application. This paper proposes the use of untreated low-cost polyvinyl alcohol (PVA) fibers and polyethylene (PE) fibers to develop a low-cost, high-performance SHGC. Axial compression and axial tension tests were conducted on the SHGC with different PE fiber volume fractions (1%, 1.5%, and 2%) and different PVA fiber replacement ratios (0%, 25%, 50%, 75%, and 100%) to investigate the hybrid effects of fibers with different surface properties and to reveal the mechanism of fiber hybridization on the mechanical behavior of SHGCs. The results show that increasing the PE fiber volume fraction improves the compressive and tensile ductility of the SHGC while increasing the PVA fiber replacement rate impacts the strength indicators positively due to the good interface effect formed between its hydrophilic surface and the matrix. When the PVA fiber replacement ratio is 100%, the compressive strength (93.4 MPa) of the SHGC is the highest, with a 21.1% increase compared to the control group. However, the tensile strength shows a trend of first increasing and then decreasing with the increase in the PVA fiber replacement ratio, reaching the highest at a 25% replacement ratio, with a 12.5% increase compared to the control group. Furthermore, a comprehensive analysis of the economic and environmental performance of the SHGC indicates that a 25% PVA fiber replacement ratio results in the best overall economic benefits and relatively low actual costs, although the effect of fiber hybridization on carbon emission indicators is not significant. This paper provides new ideas and a theoretical basis for designing low-cost SHGCs.

2.
Materials (Basel) ; 17(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39124442

RESUMEN

Engineered geopolymer composites (EGCs) exhibit excellent tensile ductility and crack control ability, making them promising for concrete structure repair. However, their widespread use is limited by high costs of reinforcement fiber and a lack of an EGC-concrete interface bonding mechanism. This study investigated a hybrid PE/PVA fiber-reinforced EGC using domestically produced unoiled PVA fibers to replace commonly used PE fibers. The bond performance of the EGC-concrete interface was evaluated through direct tensile and slant shear tests, focusing on the effects of PE fiber content (1%, 2%, and 3%), fiber hybrid ratios (2.0:0.0, 1.5:0.5, 1.0:1.0, 0.5:1.5, and 0.0:2.0), concrete substrate strength (C30, C50, and C70), and the ratio of fly ash (FA) to ground granulated blast furnace slag (GGBS) (6:4, 7:3, and 8:2) on interface bond strength. Results showed that the EGCs' compressive strength ranged from 77.1 to 108.9 MPa, with increased GGBS content significantly enhancing the compressive strength and elastic modulus. Most of the specimens exhibited strain-hardening behavior after initial cracking. Interface bonding tests revealed that a PE/PVA ratio of 1.0 increased tensile bond strength by 8.5% compared with using 2.0% PE fiber alone. Increasing the PE fiber content, PVA/PE ratio, GGBS content, and concrete substrate strength all improved the shear bond strength. This improvement was attributed to the flexible fibers' ability to restrict thermo-hydro damage and deflect and blunt microcracks, enhancing the interface's failure resistance. Cost analysis showed that replacing 50% of the PE fiber in EGC with unoiled PVA fiber reduced costs by 44.2% compared with PE fiber alone, offering the best cost-performance ratio. In summary, hybrid PE/PVA fiber EGC has promising prospects for improving economic efficiency while maintaining tensile ductility and crack-control ability. Future optimization of fiber ratios and interface design could further enhance its potential for concrete repair applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA