Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 20(32): 20812-20820, 2018 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-30004095

RESUMEN

Transition metal dichalcogenide materials have recently been shown to exhibit a variety of intriguing optical and electronic phenomena. Focusing on the optical properties of semiconducting WS2 nanotubes, we show here that these nanostructures exhibit strong light-matter interaction and form exciton-polaritons. Namely, these nanotubes act as quasi 1-D polaritonic nano-systems and sustain both excitonic features and cavity modes in the visible-near infrared range. This ability to confine light to subwavelength dimensions under ambient conditions is induced by the high refractive index of tungsten disulfide. Using "finite-difference time-domain" (FDTD) simulations we investigate the interactions between the excitons and the cavity mode and their effect on the extinction spectrum of these nanostructures. The results of FDTD simulations agree well with the experimental findings as well as with a phenomenological coupled oscillator model which suggests a high Rabi splitting of ∼280 meV. These findings open up possibilities for developing new concepts in nanotube-based photonic devices.

2.
Nano Lett ; 17(1): 28-35, 2017 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-28032770

RESUMEN

We study for the first time the resonant torsional behaviors of inorganic nanotubes, specifically tungsten disulfide (WS2) and boron nitride (BN) nanotubes, and compare them to that of carbon nanotubes. We have found WS2 nanotubes to have the highest quality factor (Q) and torsional resonance frequency, followed by BN nanotubes and carbon nanotubes. Dynamic and static torsional spring constants of the various nanotubes were found to be different, especially in the case of WS2, possibly due to a velocity-dependent intershell friction. These results indicate that inorganic nanotubes are promising building blocks for high-Q nanoelectromechanical systems (NEMS).

3.
ACS Nano ; 9(12): 12224-32, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26451698

RESUMEN

The incorporation of nanostructures into nanoelectronic and nanoelectromechanical systems is a long sought-after goal. In the present article, we report the first torsional electromechanical measurements of pure inorganic nanotubes. The WS2 nanotubes exhibited a complex and reproducible electrical response to mechanical deformation. We combined these measurements with density-functional-tight-binding calculations to understand the interplay between mechanical deformation, specifically torsion and tension, and electrical properties of WS2 nanotubes. This yielded the understanding that the electrical response to mechanical deformation may span several orders of magnitude on one hand and detect several modes of mechanical deformation simultaneously on the other. These results demonstrate that inorganic nanotubes could thus be attractive building blocks for nanoelectromechanical systems such as highly sensitive nanometric motion sensors.

4.
Nano Lett ; 13(8): 3736-41, 2013 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-23899194

RESUMEN

We report the first transistor based on inorganic nanotubes exhibiting mobility values of up to 50 cm(2) V(-1) s(-1) for an individual WS2 nanotube. The current-carrying capacity of these nanotubes was surprisingly high with respect to other low-dimensional materials, with current density at least 2.4 × 10(8) A cm(-2). These results demonstrate that inorganic nanotubes are promising building blocks for high-performance electronic applications.

5.
J Am Chem Soc ; 132(32): 11214-22, 2010 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-20698688

RESUMEN

Nanoparticles of materials with layered structure are able to spontaneously form closed-cage nanostructures such as nested fullerene-like nanoparticles and nanotubes. This propensity has been demonstrated in a large number of compounds such as WS(2), NiCl(2), and others. Layered metal oxides possess a higher ionic character and consequently are stiffer and cannot be evenly folded. Vanadium pentoxide (V(2)O(5)), a layered metal oxide, has received much attention due to its attractive qualities in numerous applications such as catalysis and electronic and optical devices and as an electrode material for lithium rechargeable batteries. The synthesis by pulsed laser ablation (PLA) of V(2)O(5) hollow nanoparticles, which are closely (nearly) associated with inorganic "fullerene-like" (NIF-V(2)O(5)) nanoparticles, but not quite as perfect, is reported in the present work. The relation between the PLA conditions and the NIF-V(2)O(5) morphology is elucidated. A new mechanism leading to hollow nanostructure via crystallization of lower density amorphous nanoparticles is proposed. Transmission electron microscopy (TEM) is used extensively in conjunction with structural modeling of the NIF-V(2)O(5) in order to study the complex 3-D structure of the NIF-V(2)O(5) nanoparticles. This structure was shown to be composed of facets with their low-energy surfaces pointing outward and seamed by defective domains. These understandings are used to formulate a formation mechanism and may improve the function of V(2)O(5) in its many uses through additional morphological control. Furthermore, this study outlines which properties are required from layered compounds to fold into perfectly closed-cage IF nanoparticles.

6.
Materials (Basel) ; 3(8): 4428-4445, 2010 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-28883335

RESUMEN

Numerous examples of closed-cage nanostructures, such as nested fullerene-like nanoparticles and nanotubes, formed by the folding of materials with layered structure are known. These compounds include WS2, NiCl2, CdCl2, Cs2O, and recently V2O5. Layered materials, whose chemical bonds are highly ionic in character, possess relatively stiff layers, which cannot be evenly folded. Thus, stress-relief generally results in faceted nanostructures seamed by edge-defects. V2O5, is a metal oxide compound with a layered structure. The study of the seams in nearly perfect inorganic "fullerene-like" hollow V2O5 nanoparticles (NIF-V2O5) synthesized by pulsed laser ablation (PLA), is discussed in the present work. The relation between the formation mechanism and the seams between facets is examined. The formation mechanism of the NIF-V2O5 is discussed in comparison to fullerene-like structures of other layered materials, like IF structures of MoS2, CdCl2, and Cs2O. The criteria for the perfect seaming of such hollow closed structures are highlighted.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA