Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Langmuir ; 35(52): 16978-16988, 2019 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-31746609

RESUMEN

Natural rubber latex is a colloidal suspension of particles, which is very important for many industrial applications. These latex particles are not only polydispersed but also very soft and deformable, which makes the prediction of rheological properties much difficult. Herein, the rheology of natural rubber latex has been studied at high particle concentrations, analyzing the effects of surfactant addition on colloidal stability. A hydrophobically modified inulin surfactant (INUTEC NRA) was selected for this study since previous works had shown that this inulin surfactant imparts good colloidal stability to polystyrene latex particles. The most important objective was studying the influence of the surfactant on the particle adsorbed layer and determining the thickness of the adsorbed surfactant layer. The results showed that the relative viscosity increased as a function of latex volume fraction, and this increase became extremely sharp as the volume fraction approached the maximum packing volume fraction, as expected. This variation in viscosity with the volume fraction has a complex behavior, which could not be analyzed using conventional models based on hard rigid spheres, such as Krieger-Dougherty (K-D) or Maron-Pierce (M-P). Herein, we describe a simple semiempirical method to determine the surfactant adsorbed layer thickness, based on the linear dependence of intrinsic viscosity with 1/(ϕmax - ϕ)2, where ϕ is the volume fraction of rubber particles and ϕmax is the maximum volume fraction at which viscosity tends to infinity. The difference in the maximum packing fraction, with and without the surfactant, allows the calculation of the adsorbed layer thickness, δ ≈ 2.8 nm, which is a good estimate for the thickness of surfactant molecules adsorbed on latex particles. This surfactant thickness has been confirmed by direct measurements using dynamic light scattering (DLS), which gave a value of 3.1 nm. Viscoelastic oscillatory measurements have also been performed, showing that natural rubber particle suspensions are predominantly elastic above ϕ = 0.63 latex volume fractions. The elastic modulus has been analyzed as a function of surfactant concentration, confirming that the stability of latex particles is mainly controlled by the surfactant concentration.

2.
J Colloid Interface Sci ; 319(1): 152-9, 2008 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-18076897

RESUMEN

Recently, steric repulsive forces induced by a new graft copolymer surfactant, which is based in inulin (polyfructose), have been described. Previous investigations by atomic force microscopy between solid surfaces covered with adsorbed surfactant indicated strong repulsive forces even at high electrolyte concentration, due to the steric repulsion produced by the surfactant hydration. In the present paper, the colloidal stabilization provided by this surfactant is studied by rheology. The measurements were carried out on sterically stabilized polystyrene (PS) and poly(methyl methacrylate) (PMMA) containing adsorbed surfactant (INUTEC SP1). Steady-state shear stress as a function of shear rate curves was established at various latex volume fractions. The viscosity volume fraction curves were compared with those calculated using the Doughtry-Krieger equation for hard sphere dispersions. From the experimental eta r-phi curves the effective volume fraction of the latex dispersions could be calculated and this was used to determine the adsorbed layer thickness Delta. The value obtained was 9.6 nm, which is in good agreement with that obtained using atomic force microscopy (AFM). Viscoelastic measurements of the various latex dispersions were carried out as a function of applied stress (to obtain the linear viscoelastic region) and frequency. The results showed a change from predominantly viscous to predominantly elastic response at a critical volume fraction (phi c). The effective critical volume fraction, phi eff, was calculated using the adsorbed layer thickness (Delta) obtained from steady-state measurements. For PS latex dispersions phi eff was found to be equal to 0.24 whereas for PMMA phi eff=0.12. These results indicated a much softer interaction between the latex dispersions containing hydrated polyfructose loops and tails when compared with latices containing poly(ethylene oxide) (PEO) layers. The difference could be attributed to the stronger hydration of the polyfructose loops and tails when compared with PEO. This clearly shows the much stronger steric interaction between particles stabilized using hydrophobically modified inulin.


Asunto(s)
Fructanos/química , Inulina/química , Polimetil Metacrilato/química , Poliestirenos/química , Tensoactivos/química , Antineoplásicos/química , Elasticidad , Interacciones Hidrofóbicas e Hidrofílicas , Reología , Viscosidad
3.
J Colloid Interface Sci ; 311(2): 430-7, 2007 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-17434177

RESUMEN

The adsorption isotherm of a hydrophobically modified inulin (INUTEC SP1) on polystyrene (PS) and poly(methyl methacrylate) (PMMA) particles was determined. The results show a high affinity isotherm for both particles as expected for a polymeric surfactant adsorption. The interactions forces between two layers of the hydrophobically modified inulin surfactant adsorbed onto a glass sphere and plate was determined using a modified atomic force microscope (AFM) apparatus. In the absence of any polymer, the interaction was attractive although the energy of interaction was lower than predicted by the van der Waals forces. The results between two layers of the adsorbed polymer confirms the adsorption isotherms results and provides an explanation to the high stability of the particles covered by INUTEC SP1 at high electrolyte concentration. Stability of dispersions against strong flocculation could be attributed to the conformation of the polymeric surfactant at the solid/liquid interface (multipoint attachment with several loops) which remains efficient at Na(2)SO(4) concentration reaching 1.5 mol dm(-3). The thickness of the adsorbed polymer layer in water determined both by AFM and rheology measurements, was found to be about 9 nm.

4.
Biomacromolecules ; 8(2): 485-9, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17291072

RESUMEN

Inulin, the polydisperse polyfructose, extracted from chicory, was modified via esterification with acyl phosphonates. The grafting of an acyl chain onto the inulin backbone under different conditions led to a highly efficient synthesis of a series of inulin esters, with interesting tensioactive properties. The derivatives were evaluated in oil-in-water (O/W) emulsions with isoparaffinic oil, Isopar M. Therefore, a 2% (w/v) aqueous solution of inulin-based surfactant was used in 50/50 O/W emulsions, in nonelectrolyte, and in electrolyte media, using 1 M MgSO4. Longer acyl chains, e.g., dodecanoyl (C12), hexadecanoyl (C16), and octadecanoyl (C18), with degrees of substitution lower than 0.5, gave rise to the highest emulsion stabilities against coalescence.


Asunto(s)
Emulsionantes/síntesis química , Ésteres/síntesis química , Inulina/síntesis química , Organofosfonatos/química , Emulsiones , Aceites , Agua
5.
Biomacromolecules ; 6(4): 1992-7, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16004437

RESUMEN

Inulin, a polydisperse reserve polysaccharide from chicory, was chemically modified via alkoxylation using ethylene oxide, in a water free medium. The reaction resulted in a range of products with very distinct properties, such as a highly increased water solubility, moderate surface-active properties and high cloud points in electrolyte media. Because of the unique characteristics of inulin, such as its molecular weight range, and because of the high water solubility of the ethoxylates, the products were evaluated as additive in water-blown polyurethane foams. The addition of inulin ethoxylates resulted in an increased foam hardness and density, the latter in fact being unwanted. The foam properties were evaluated based on the indentation test, the foam density, the SAG factor, and the hysteresis curves of standard cubes. Based on these parameters inulin ethoxylates were shown to have a beneficial effect on the foam properties. The inulin ethoxylate with a theoretical degree of substitution of 0.5 proved to be the best derivative, since the increase in hardness was the highest, while the increase in density was negligible.


Asunto(s)
Inulina/química , Poliuretanos/química , Agua/química , Solubilidad
6.
Langmuir ; 21(11): 4837-41, 2005 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-15896021

RESUMEN

The use of a new class of graft polymer surfactants, based on inulin, in emulsion polymerization of poly(methyl methacrylate) (PMMA) and polystyrene (PS) particles is described. PS and PMMA were synthesized by emulsion polymerization, and stable particles with a high monomer content (50 wt %) were obtained with a very small amount of polymeric surfactant ([surfactant]/[monomer] = 0.0033). The latex dispersions were characterized by dynamic light scattering and by transmission electron microscopy to obtain the average particle size and the polydispersity index, and the stability was determined by turbidimetry measurements and expressed in terms of critical coagulation concentration. The last section gives a comparison of PMMA particles prepared by emulsion polymerization using classical surfactants from different types as emulsifiers with that obtained using the copolymer surfactant. It shows the superiority of INUTEC SP1 as it is the only one that allows stable particles at 20 wt % monomer content, with a smaller ratio [surfactant]/[monomer] = 0.002.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA