Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Diagnostics (Basel) ; 14(13)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-39001225

RESUMEN

INTRODUCTION: Periodontal disease is an infectious syndrome presenting inflammatory aspects. Radiographic evaluation is an essential complement to clinical assessment but has limitations such as the impossibility of assessing tissue inflammation. It seems essential to consider new exploration methods in clinical practice. Ultrasound of periodontal tissues could make it possible to visualize periodontal structures and detect periodontal diseases (periodontal pocket measurement and the presence of intra-tissue inflammation). Clinical Innovation Report: An ultrasound probe has been specially developed to explore periodontal tissues. The objective of this clinical innovation report is to present this device and expose its potential. DISCUSSION: Various immediate advantages favor using ultrasound: no pain, no bleeding, faster execution time, and an image recording that can be replayed without having to probe the patient again. Ultrasound measurements of pocket depth appear to be as reliable and reproducible as those obtained by manual probing, as do tissue thickness measurements and the detection of intra-tissue inflammation. CONCLUSIONS: Ultrasound seems to have a broad spectrum of indications. Given the major advances offered by ultrasound imaging as a complementary aid to diagnosis, additional studies are necessary to validate these elements and clarify the potential field of application of ultrasound imaging in dentistry.

2.
Materials (Basel) ; 17(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38612023

RESUMEN

A typical piezoelectric energy harvester is a bimorph cantilever with two layers of piezoelectric material on both sides of a flexible substrate. Piezoelectric layers of lead-based materials, typically lead zirconate titanate, have been mainly used due to their outstanding piezoelectric properties. However, due to lead toxicity and environmental problems, there is a need to replace them with environmentally benign materials. Here, our main efforts were focused on the preparation of hafnium-doped barium titanate (BaHfxTi1-xO3; BHT) sol-gel materials. The original process developed makes it possible to obtain a highly concentrated sol without strong organic complexing agents. Sol aging and concentration can be controlled to obtain a time-stable sol for a few months at room temperature, with desired viscosity and colloidal sizes. Densified bulk materials obtained from this optimized sol are compared with a solid-state synthesis, and both show good electromechanical properties: their thickness coupling factor kt values are around 53% and 47%, respectively, and their converse piezoelectric coefficient d33∗ values are around 420 and 330 pm/V, respectively. According to the electromechanical properties, the theoretical behavior in a bimorph configuration can be simulated to predict the resonance and anti-resonance frequencies and the corresponding output power values to help to design the final device. In the present case, the bimorph configuration based on BHT sol-gel material is designed to harvest ambient vibrations at low frequency (<200 Hz). It gives a maximum normalized volumetric power density of 0.03 µW/mm3/Hz/g2 at 154 Hz under an acceleration of 0.05 m/s2.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38060358

RESUMEN

Research activities on lead-free piezoelectric materials have been ongoing for over 20 years. Generally, the applicability of the main material families is less universal than that of lead-based compositions such as lead zirconate titanate, but in some cases, the corresponding applications have already been identified. Due to the extensive research, it is now possible to manufacture demonstrators and prototypes for different applications and the authors propose in this article to take stock of these advances. For this, we have chosen to first recall briefly the main new material systems using a simplistic "soft" and "hard" classification for approaching the various resonant transducer applications. Medical imaging applications that represent one of the most important fields are presented in a second step together with other low-power transducers. Then, a variety of applications are merged under the heading of high-power transducers. In addition, we mention two points that are important to consider when manufacturing at a larger scale. For the design of transducers, complete datasets must be available, especially if modeling tools are used. Finally, the commercialization of these lead-free materials imposes essential secondary requirements in terms of availability, reproducibility, sample size, and so on.

4.
Artículo en Inglés | MEDLINE | ID: mdl-37224371

RESUMEN

Centimeter-sized BaTiO3-based crystals grown by top-seeded solution growth from the BaTiO3-CaTiO3-BaZrO3 system were used to process a high-frequency (HF) lead-free linear array. Piezoelectric plates with (110)pc cut within 1° accuracy were used to manufacture two 1-3 piezo-composites with thicknesses of 270 and [Formula: see text] for resonant frequencies in air of 10 and 30 MHz, respectively. The electromechanical characterization of the BCTZ crystal plates and the 10-MHz piezocomposite yielded the thickness coupling factors of 40% and 50%, respectively. We quantified the electromechanical performance of the second piezocomposite (30 MHz) according to the reduction in the pillar sizes during the fabrication process. The dimensions of the piezocomposite at 30 MHz were sufficient for a 128-element array with a 70- [Formula: see text] element pitch and a 1.5-mm elevation aperture. The transducer stack (backing, matching layers, lens, and electrical components) was tuned with the characteristics of the lead-free materials to deliver optimal bandwidth and sensitivity. The probe was connected to a real-time HF 128-channel echographic system for acoustic characterization (electroacoustic response and radiation pattern) and to acquire high-resolution in vivo images of human skin. The center frequency of the experimental probe was 20 MHz, and the fractional bandwidth at -6 dB was 41%. Skin images were compared against those obtained with a lead-based 20-MHz commercial imaging probe. Despite significant differences in sensitivity between elements, in vivo images obtained with a BCTZ-based probe convincingly demonstrated the potential of integrating this piezoelectric material in an imaging probe.

5.
Materials (Basel) ; 16(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38068200

RESUMEN

Lead-based materials are widely used in piezoceramics due to their high electromechanical properties. However, due to environmental protection and sustainable development, the use of the toxic element lead (Pb) in electronic devices is strictly restricted, therefore requiring the rapid development of piezoelectric-based devices with lead-free ceramics. In this context, a lead-free doped barium titanate was studied with a dual objective. First, a new sol-gel method to synthesize Hf4+-doped BaHfxTi1-xO (BHT) with x = 0.05, 0.075, and 0.10 is presented. Such BHT sols were prepared at high concentrations of up to 1 M. Dilution in ethylene glycol allowed parameters (viscosity, colloid sizes, etc.) to be controlled, which ensured a time-stable sol for several months at room temperature. Second, densified bulk ceramics with attrited powders were obtained from these sols and showed very good electromechanical properties, with a thickness coupling factor of kt = 47% (BaHf0.05Ti0.95O3 sintered at 1500 °C/6 h). These results are a first step that will allow the processing of lead-free piezoelectric thick films using a sol-gel composite method for vibrational energy harvesting applications.

6.
Micromachines (Basel) ; 14(11)2023 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-38004946

RESUMEN

A complete model was developed to simulate the behavior of a circular clamped axisymmetric fluid-coupled Piezoelectric Micromachined Ultrasonic Transducer (PMUT). Combining Finite Difference and Boundary Element Matrix (FD-BEM), this model is based on the discretization of the partial differential equation used to translate the mechanical behavior of a PMUT. In the model, both the axial and the transverse displacements are preserved in the equation of motion and used to properly define the neutral line position. To introduce fluid coupling, a Green's function dedicated to axisymmetric circular radiating sources is employed. The resolution of the behavioral equations is used to establish the equivalent electroacoustic circuit of a PMUT that preserves the average particular velocity, the mechanical power, and the acoustic power. Particular consideration is given to verifying the validity of certain assumptions that are usually made across various steps of previously reported analytical models. In this framework, the advantages of the membrane discretization performed in the FD-BEM model are highlighted through accurate simulations of the first vibration mode and especially the cutoff frequency that many other models do not predict. This high cutoff frequency corresponds to cases where the spatial average velocity of the plate is null and is of great importance for PMUT design because it defines the upper limit above which the device is considered to be mechanically blocked. These modeling results are compared with electrical and dynamic membrane displacement measurements of AlN-based (500 nm thick) PMUTs in air and fluid. The first resonance frequency confrontation showed a maximum relative error of 1.13% between the FD model and Finite Element Method (FEM). Moreover, the model perfectly predicts displacement amplitudes when PMUT vibrates in a fluid, with less than 5% relative error. Displacement amplitudes of 16 nm and 20 nm were measured for PMUT with 340 µm and 275 µm diameters, respectively. This complete PMUT model using the FD-BEM approach is shown to be very efficient in terms of computation time and accuracy.

7.
Sensors (Basel) ; 23(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37430599

RESUMEN

Backing materials with tailored acoustic properties are beneficial for miniaturized ultrasonic transducer design. Whereas piezoelectric P(VDF-TrFE) films are common elements in high-frequency (>20 MHz) transducer design, their low coupling coefficient limits their sensitivity. Defining a suitable sensitivity-bandwidth trade-off for miniaturized high-frequency applications requires backings with impedances of >25 MRayl and strongly attenuating to account for miniaturized requirements. The motivation of this work is related to several medical applications such as small animal, skin or eye imaging. Simulations showed that increasing the acoustic impedance of the backing from 4.5 to 25 MRayl increases transducer sensitivity by 5 dB but decreases the bandwidth, which nevertheless remains high enough for the targeted applications. In this paper, porous sintered bronze material with spherically shaped grains, size-adapted for 25-30 MHz frequency, was impregnated with tin or epoxy resin to create multiphasic metallic backings. Microstructural characterizations of these new multiphasic composites showed that impregnation was incomplete and that a third air phase was present. The selected composites, sintered bronze-tin-air and sintered bronze-epoxy-air, at 5-35 MHz characterization, produced attenuation coefficients of 1.2 and >4 dB/mm/MHz and impedances of 32.4 and 26.4 MRayl, respectively. High-impedance composites were adopted as backing (thickness = 2 mm) to fabricate focused single-element P(VDF-TrFE)-based transducers (focal distance = 14 mm). The center frequency was 27 MHz, while the bandwidth at -6 dB was 65% for the sintered-bronze-tin-air-based transducer. We evaluated imaging performance using a pulse-echo system on a tungsten wire (diameter = 25 µm) phantom. Images confirmed the viability of integrating these backings in miniaturized transducers for imaging applications.

8.
Artículo en Inglés | MEDLINE | ID: mdl-37022397

RESUMEN

An innovative processing to deposit P(VDF-TrFE) film on silicon wafers by an inkjet printing method was used to fabricate high-frequency annular array prototype. This prototype has a total aperture of 7.3 mm and 8 active elements. A polymer-based lens with low acoustic attenuation was added to the flat deposition on the wafer, setting the geometric focus to 13.8 mm. With a thickness of around 11 µm, the electromechanical performance of P(VDF-TrFE) films was evaluated with an effective thickness coupling factor of 22%. Electronics allowing all elements to simultaneously emit as a single element transducer was developed. In reception, a dynamic focusing, based on eight independent amplifying channels, was preferred. The center frequency of the prototype was 21.3 MHz, the insertion loss was 48.5 dB and the -6 dB fractional bandwidth was 143%. The trade-off sensitivity/bandwidth has rather favored the large bandwidth. Dynamic focusing on reception was applied and allowed to improvements in the lateral-full width at half maximum as shown on images obtained with a wire phantom at several depths. The next step, for a fully operational multi-element transducer, will be to achieve a significant increase of the acoustic attenuation in the silicon wafer.

9.
Sensors (Basel) ; 22(9)2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35590911

RESUMEN

Thick films with nominal composition (K0.5Na0.5)0.99Sr0.005NbO3 (KNNSr) on porous ceramics with identical nominal composition were investigated as potential candidates for environmentally benign ultrasonic transducers composed entirely of inorganic materials. In this paper, the processing of the multilayer structure, namely, the thick film by screen printing and the porous ceramic by sacrificial template method, is related to their phase composition, microstructure, electromechanical, and acoustic properties to understand the performance of the devices. The ceramic with a homogeneous distribution of 8 µm pores had a sufficiently high attenuation coefficient of 0.5 dB/mm/MHz and served as an effective backing. The KNNSr thick films sintered at 1100 °C exhibited a homogeneous microstructure and a relative density of 97%, contributing to a large dielectric permittivity and elastic constant and yielding a thickness coupling factor kt of ~30%. The electroacoustic response of the multilayer structure in water provides a centre frequency of 15 MHz and a very large fractional bandwidth (BW) of 127% at -6 dB. The multilayer structure is a candidate for imaging applications operating above 15 MHz, especially by realising focused-beam structure through lenses to further increase the sensitivity in the focal zone.

10.
Materials (Basel) ; 14(23)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34885292

RESUMEN

We show how sintering in different atmospheres affects the structural, microstructural, and functional properties of ~30 µm thick films of K0.5Na0.5NbO3 (KNN) modified with 0.38 mol% K5.4Cu1.3Ta10O29 and 1 mol% CuO. The films were screen printed on platinized alumina substrates and sintered at 1100 °C in oxygen or in air with or without the packing powder (PP). The films have a preferential crystallographic orientation of the monoclinic perovskite phase in the [100] and [-101] directions. Sintering in the presence of PP contributes to obtaining phase-pure films, which is not the case for the films sintered without any PP notwithstanding the sintering atmosphere. The latter group is characterized by a slightly finer grain size, from 0.1 µm to ~2 µm, and lower porosity, ~6% compared with ~13%. Using piezoresponse force microscopy (PFM) and electron backscatter diffraction (EBSD) analysis of oxygen-sintered films, we found that the perovskite grains are composed of multiple domains which are preferentially oriented. Thick films sintered in oxygen exhibit a piezoelectric d33 coefficient of 64 pm/V and an effective thickness coupling coefficient kt of 43%, as well as very low mechanical losses of less than 0.5%, making them promising candidates for lead-free piezoelectric energy harvesting applications.

11.
J Acoust Soc Am ; 149(5): 3122, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34241119

RESUMEN

1-3 piezocomposites are first choice materials for integration in ultrasonic transducers due to their high electromechanical performance, particularly, in their thickness mode. The determination of a complete set of effective electroelastic parameters through a homogenization scheme is of primary importance for their consideration as homogeneous. This allows for the simplification of the transducer design using numerical methods. The method proposed is based on acoustic wave propagation through an infinite piezocomposite, which is considered to be homogeneous material. Christoffel tensor components for the 2 mm symmetry were expressed to deduce slowness curves in several planes. Simultaneously, slowness curves of a numerical phantom were obtained using a finite element method (FEM). Dispersive curves were initially calculated in the corresponding heterogeneous structure. The subsequent identification of the effective parameters was based on a fitting process between the two sets of slowness curves. Then, homogenized coefficients were compared with reference results from a numerical method based on a fast Fourier transform for heterogeneous periodic piezoelectric materials in the quasi-static regime. A relative error of less than 2% for a very large majority of effective coefficients was obtained. As the aim of this paper is to implement an experimental procedure based on the proposed homogenization scheme to determine the effective parameters of the material in operating conditions, it is shown that simplifications to the procedure can be performed and a careful selection of only seven slowness directions is sufficient to obtain the complete database for a piezocomposite containing square-shaped fibers. Finally, further considerations to adapt the present work to a 1-3 piezocomposite with a fixed thickness are also presented.

12.
Artículo en Inglés | MEDLINE | ID: mdl-32224454

RESUMEN

For transducer design, it is essential to know the acoustic properties of the materials in their operating conditions. At frequencies over 15 MHz, standard methods are not well adapted because layers are very thin and backings have very high attenuation. In this article, we report on an original method for measuring the acoustic properties in the 15-25 MHz frequency range, corresponding to typical skin-imaging applications, using a backing/piezoelectric multilayer structure. Onto a porous Pb(Zr0.53Ti0.47O3 (PZT) substrate, a piezoelectric PZT-based layer with a thickness of [Formula: see text] was deposited and directly used to excite an acoustic signal into water. Herein, the measured signal corresponds to the wave that is first reflected on a target in water, then propagates back to the multilayer structure, and is transmitted through the thick film and further to the rear face of the porous backing, where it is again reflected and returns to the piezoelectric thick film, thus avoiding overlap with the electrical excitation signal. Two types of PZT backings with similar porosity of ~20% and spherical pores with size of 1.5 and 10 [Formula: see text] were processed. The ultrasound group velocities were measured at ~3500 m/s for both samples. The acoustic attenuation of the backings with pore size of 1.5 and 10 [Formula: see text] were 12 and 33 dB/mm, respectively, measured at 19 MHz. This advanced measuring technique demonstrated potential for the simple measurements of acoustic properties of backing at high frequencies in operating conditions. Importantly, this method also enables rapid determination of the minimum required thickness of the backing to act as a semi-infinite medium, for high-frequency transducer applications.

13.
Artículo en Inglés | MEDLINE | ID: mdl-30762543

RESUMEN

A new model for piezoelectric textured ceramics was developed that considers the presence of porosity, which can appear during heat treatment (ceramic sintering). In the long wavelength approximation, a matrix method, which has already been applied to piezoelectric composites, was extended to textured ceramics for three phases [porosity (air), piezoelectric single-crystal (related to the texturation degree), and ceramic] to calculate the effective electroelastic modulus. This method was first compared and validated with finite-element calculations. A computation was applied to two systems with lead-based (PMN-PT) and lead-free (KNN) compositions. The results showed that the introduction of porosity in the whole material promotes electromechanical performance, particularly the electromechanical coupling factor kt , while limiting the degree of texturation. As an example, for the chosen PMN-PT system, an equivalent kt factor of 60% can be obtained with 1% porosity and an 85% single-crystal volume fraction or with 16% porosity and a 40% single-crystal volume fraction. According to the database used, this tradeoff is different. With the chosen lead-free composition, the degree of texture is less important than in the lead-based composition. Consequently, the porosity content is of primary importance for significantly improving the electromechanical coupling factor kt .

14.
Artículo en Inglés | MEDLINE | ID: mdl-30371362

RESUMEN

Dense barium titanate (BaTiO3) ceramics ( [Formula: see text]) with a microscale grain size are obtained at 800 °C-1100 °C by a solid-state ceramic process. BaTiO3 (BT) doped with Co2+/3+ leads to a significant improvement in the properties ( pC/N). Soft and hard characteristics of the piezoceramics are observed depending on the dopant ions. The Co/Li acceptor dopants lead to hard piezoceramics and aging phenomena. Aged BT:Co, Li exhibits double loops and a distorted hysteresis cycle for nonpoled and poled ceramics, respectively. Ceramics poled by the increasing field process at room temperature and the field cooling process present different poled and aged states, which are dependent on the thermal history and poling process. The distorted hysteresis loops for BT:Co, Li indicate an increased internal bias field with aging time. Insertion of donor dopants, such as Nb5+ ions, significantly reduces the internal field. These behaviors are related to the presence of defect dipoles ( [Formula: see text]"- [Formula: see text] due to the insertion of acceptor dopants in the B-sites following the oxygen vacancies to equilibrate charge compensation. BT:Co sintered with LiF leads to a quasi-symmetric hysteresis loop, indicating that F- may insert into an oxygen site and counteract the formation of oxygen vacancies. Dielectric drift of BT:Co, Li shows resilience to an ac electric field, which is related to the increased internal field. BT doped with 0.75 mol% Co2+/3+ and 1 mol% Li2CO3 presents hard piezoelectric behavior with a Rayleigh coefficient α = 2.53 10-7 m/V and the capability to handle high electrical stress of up to 400 [Formula: see text]/mm.

15.
Artículo en Inglés | MEDLINE | ID: mdl-29856722

RESUMEN

In the field of high-frequency ultrasound imaging ( MHz), tools for characterizing the performance of imaging systems are lacking. Indeed, commercial phantoms are often inadequate for this frequency range. The development of homemade phantoms on the laboratory scale is often required but is hindered by the difficulty in making very small structures that must be distributed with high accuracy in 3-D space. We propose investigating the use of 3-D photopolymer printing to create resolution and calibration phantoms designed for high-frequency ultrasound imaging. The quality and importance of these phantoms are discussed from the point of view of ultrasound parameters and imaging. First, the compressional wave group velocity, acoustic impedance, and attenuation of six photopolymerized materials were measured using temporal and spectral methods in a substitution experimental setup. Measurements were performed on printed samples using a broadband-focused single-element transducer covering a large frequency range (15-55 MHz). Two 3-D phantoms incorporating different shapes and dimensions were designed and printed. Finally, 3-D acoustic images were obtained using either a mechanically driven single-element transducer or a high-frequency commercial imaging system. Three-dimensional printing enabled us to generate phantoms suitable for high-frequency imaging with complex geometry inclusions and with a surrounding material having acoustic properties close to those of human skin. The calculated SNR between the inclusion and surrounding media is approximately 50 dB. In conclusion, 3-D printing is a useful tool for directly, easily, and rapidly manufacturing ultrasound phantoms for ultrasound imaging system assessments and computational calibration or validation.


Asunto(s)
Fantasmas de Imagen , Impresión Tridimensional , Ultrasonografía/instrumentación , Diseño de Equipo , Humanos , Modelos Biológicos , Relación Señal-Ruido , Piel/diagnóstico por imagen , Transductores
16.
Artículo en Inglés | MEDLINE | ID: mdl-28574350

RESUMEN

Multielement transducers enabling novel cost-effective fabrication of imaging arrays for medical applications have been presented earlier. Due to the favorable low lateral coupling of the screen-printed PZT, the elements can be defined by the top electrode pattern only, leading to a kerfless design with low crosstalk between the elements. The thick-film-based linear arrays have proved to be compatible with a commercial ultrasonic scanner and to support linear array beamforming as well as phased array beamforming. The main objective of the presented work is to investigate the performance of the devices at the transducer level by extensive measurements of the test structures. The arrays have been characterized by several different measurement techniques. First, electrical impedance measurements on several elements in air and liquid have been conducted in order to support material parameter identification using the Krimholtz-Leedom-Matthaei model. It has been found that electromechanical coupling is at the level of 35%. The arrays have also been characterized by a pulse-echo system. The measured sensitivity is around -60 dB, and the fractional bandwidth is close to 60%, while the center frequency is about 12 MHz over the whole array. Finally, laser interferometry measurements have been conducted indicating very good displacement level as well as pressure. The in-depth characterization of the array structure has given insight into the performance parameters for the array based on PZT thick film, and the obtained information will be used to optimize the key parameters for the next generation of cost-effective arrays based on piezoelectric thick film.

17.
Artículo en Inglés | MEDLINE | ID: mdl-27913333

RESUMEN

The standard fabrication method for 1-3 piezocomposites for ultrasound transducers is the "dice and fill" method (DFM) in which lateral periodicity is introduced. This contributes to the appearance of spurious modes that can drastically affect the performance of the device if they appear near its thickness mode frequency, thus limiting the effective frequency range. A new 1-3 piezocomposite fabricated with a super-cell structure [1-3 super cell (13SC)] was designed in order to overcome these limitations. It consists of the merging of several periodic cells with 47% PZT volume fraction and epoxy resin as the matrix. Two lateral periodicities in one direction are defined as well as two different kerfs. The chosen cell shape is composed of five nonaligned square section rods ( 1 ×1 mm 2 ). For comparison of performance, two regular 1-3 piezocomposites (the same materials and equivalent periodicities) were fabricated by DFM. Electroacoustic responses in water were measured for the three composites being considered as transducers. Successive regular thinnings (from 2.8 to 1.1 mm) were carried out for each sample to increase the operating frequency (from around 0.4 to 1.3 MHz) and study the evolution of the characteristics (bandwidth and sensitivity). The experimental results confirmed the behavior of those obtained with numerical simulations, showing that the 13SC composite can be used in this entire frequency range, unlike regular composites.

18.
J Acoust Soc Am ; 139(6): 3296, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27369154

RESUMEN

Phononic crystals made of piezoelectric composites with 1-3 connectivity are studied theoretically and experimentally. It is shown that they present Bragg band gaps that depend on the periodic electrical boundary conditions. These structures have improved properties compared to phononic crystals composed of bulk piezoelectric elements, especially the existence of larger band gaps and the fact that they do not require severe constraints on their aspect ratios. Experimental results present an overall agreement with the theoretical predictions and clearly show that the pass bands and stop bands of the device under study are easily tunable by only changing the electrical boundary conditions applied on each piezocomposite layer.

19.
Artículo en Inglés | MEDLINE | ID: mdl-24569258

RESUMEN

An electrophoretic deposition (EPD) process with high deposition rate was used to fabricate a curved piezoelectric thick film devoted to high-frequency transducers for medical imaging. Niobium-doped lead zirconate titanate (PZTNb) powder was stabilized in ethanol to prepare a suspension with high zeta potential and low conductivity. A gold layer, pad-printed and fired on a curved porous PZT substrate, was used as the working electrode for the deposition of the PZTNb thick film. This substrate was chosen because it has the required properties (acoustic impedance and attenuation) to be used directly as a backing for the high-frequency transducer, leading to a simplified process for transducer assembly with this integrated structure. PZT-Nb thick films were also deposited by EPD on flat gold-coated alumina substrates as a reference. The thickness of the films was between 20 and 35 µm, and their electromechanical performance was comparable to standard PZT bulk ceramics with a thickness coupling factor of 48%. For the curved thick film, the thickness coupling factor was slightly lower. The corresponding integrated structure was used to fabricate a transducer with a center frequency of 40 MHz and an f-number of 2.8. It was integrated into a realtime ultrasound scanner and used to image human forearm skin; the resulting images showed, for the first time, the efficacy of the EPD process for these imaging applications.


Asunto(s)
Galvanoplastia/métodos , Plomo/química , Membranas Artificiales , Sonicación/instrumentación , Titanio/química , Transductores , Ultrasonografía/instrumentación , Circonio/química , Electroforesis/métodos , Diseño de Equipo , Análisis de Falla de Equipo , Plomo/efectos de la radiación , Titanio/efectos de la radiación , Circonio/efectos de la radiación
20.
Artículo en Inglés | MEDLINE | ID: mdl-24297028

RESUMEN

Detection of high-order nonlinear components issued from microbubbles has emerged as a sensitive method for contrast agent imaging. Nevertheless, the detection of these high-frequency components, including the third, fourth, and fifth harmonics, remains challenging because of the lack of transducer sensitivity and bandwidth. In this context, we propose a new design of imaging transducer based on a simple fabrication process for high-frequency nonlinear imaging. The transducer is composed of two elements: the outer low-frequency (LF) element was centered at 4 MHz and used in transmit mode, whereas the inner high-frequency (HF) element centered at 14 MHz was used in receive mode. The center element was pad-printed using a lead zirconate titanate (PZT) paste. The outer element was molded using a commercial PZT, and curved porous unpoled PZT was used as backing. Each piezoelectric element was characterized to determine the electromechanical performance with thickness coupling factor around 45%. After the assembly of the two transducer elements, hydrophone measurements (electroacoustic responses and radiation patterns) were carried out and demonstrated a large bandwidth (70% at -3 dB) of the HF transducer. Finally, the transducer was evaluated for contrast agent imaging using contrast agent microbubbles. The results showed that harmonic components (up to the sixth harmonic) of the microbubbles were successfully detected. Moreover, images from a flow phantom were acquired and demonstrated the potential of the transducer for high-frequency nonlinear contrast imaging.


Asunto(s)
Medios de Contraste/química , Transductores , Ultrasonografía/instrumentación , Algoritmos , Diseño de Equipo , Plomo , Microburbujas , Fantasmas de Imagen , Titanio , Circonio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA