Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
ESC Heart Fail ; 8(6): 5606-5612, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34617412

RESUMEN

AIMS: Recent evidence has demonstrated that ketone bodies, particularly ß-hydroxybutyrate (BHB), are beneficial to the failing heart due to their potential as an alternative energy substrate as well as their anti-inflammatory and anti-oxidative properties. Exogenous supplementation of ketones also helps prevent heart failure (HF) development in rodent models, but whether ketones can be used to treat HF remains unexplored. Herein, we investigated whether chronic supplementation of ketones is beneficial for the heart in a mouse model of established HF. METHODS AND RESULTS: To elevate circulating ketone levels, we utilized (R)-3-hydroxybutyl-(R)-3-hydroxybutyrate [ketone ester (KE)]. C57Bl/6N male mice were subjected to transverse aortic constriction (TAC) surgery. After developing HF, mice were treated with either 20% KE or vehicle via drinking water for 2 weeks. In another cohort, mice 3-4 weeks post-TAC received acute intravenous infusions of BHB or saline for 1 h and their cardiac function was measured. 20% KE significantly elevated blood BHB in mice (P < 0.01) without inducing ketoacidosis or altering other metabolic parameters. Mice with overt HF (30-45% ejection fraction) treated with 20% KE displayed significantly elevated circulating ketone levels compared with vehicle-treated mice (P < 0.05). The significant cardiac dysfunction in mice with HF continued to worsen after 2 weeks of vehicle treatment, whereas this decline was absent in KE-treated mice (mean difference 4.7% ejection fraction; P < 0.01). KE treatment also alleviated TAC-induced cardiomyocyte hypertrophy (P < 0.05) and reduced the TAC-induced elevated cardiac periostin (P < 0.05), a marker of activated fibroblasts. Cardiac fibrosis was also significantly reduced with KE treatment in TAC mice (P < 0.01). In another cohort, acute BHB infusion significantly increased the cardiac output of mice with HF (P < 0.05), providing further support that ketone therapy can be used to treat HF. CONCLUSIONS: We show that chronic treatment of exogenous ketones is of benefit to the failing heart and that chronic ketone elevation may be a therapeutic option for HF. Further investigations to elucidate the underlying mechanism(s) are warranted.


Asunto(s)
Insuficiencia Cardíaca , Cetonas , Animales , Suplementos Dietéticos , Humanos , Cetonas/metabolismo , Cetonas/farmacología , Cetonas/uso terapéutico , Masculino , Ratones , Volumen Sistólico , Función Ventricular Izquierda
2.
Circ Heart Fail ; 13(6): e006573, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32493060

RESUMEN

BACKGROUND: Previous studies have shown beneficial effects of acute infusion of the primary ketone body, ß-hydroxybutyrate, in heart failure (HF). However, whether chronic elevations in circulating ketones are beneficial remains unknown. METHODS: To chronically elevate circulating ketones in mice, we deleted the expression of the ketolytic, rate-limiting-enzyme, SCOT (succinyl-CoA:3-ketoacid-CoA transferase 1; encoded by Oxct1), in skeletal muscle. Tamoxifen-inducible skeletal muscle-specific Oxct1Muscle-/- knockout (n=32) mice and littermate controls (wild type; WT; n=35) were subjected to transverse aortic constriction (TAC) surgery to induce HF. RESULTS: Deletion of SCOT in skeletal, but not cardiac muscle resulted in elevated concentrations of fasted circulating ß-hydroxybutyrate in knockout mice compared with WT mice (P=0.030). Five weeks following TAC, WT mice progressed to HF, whereas knockout mice with elevated fasting circulating ketones were largely protected from the TAC-induced effects observed in WT mice (ejection fraction, P=0.011; mitral E/A, P=0.012). Furthermore, knockout mice with TAC had attenuated expression of markers of sterile inflammation and macrophage infiltration, which were otherwise elevated in WT mice subjected to TAC. Lastly, addition of ß-hydroxybutyrate to isolated hearts was associated with reduced NLRP3 (nucleotide-binding domain-like receptor protein 3)-inflammasome activation, which has been previously shown to play a role in contributing to HF-induced cardiac inflammation. CONCLUSIONS: These data show that chronic elevation of circulating ketones protects against the development of HF that is associated with the ability of ß-hydroxybutyrate to directly reduce inflammation. These beneficial effects of ketones were associated with reduced cardiac NLRP3 inflammasome activation, suggesting that ketones may modulate cardiac inflammation via this mechanism.


Asunto(s)
Ácido 3-Hidroxibutírico/sangre , Coenzima A Transferasas/deficiencia , Insuficiencia Cardíaca/prevención & control , Miocarditis/prevención & control , Miocardio/enzimología , Animales , Coenzima A Transferasas/genética , Modelos Animales de Enfermedad , Fibrosis , Insuficiencia Cardíaca/sangre , Insuficiencia Cardíaca/enzimología , Insuficiencia Cardíaca/fisiopatología , Hipertrofia Ventricular Izquierda/sangre , Hipertrofia Ventricular Izquierda/fisiopatología , Hipertrofia Ventricular Izquierda/prevención & control , Inflamasomas/metabolismo , Preparación de Corazón Aislado , Masculino , Ratones Noqueados , Miocarditis/sangre , Miocarditis/enzimología , Miocarditis/fisiopatología , Miocardio/patología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Regulación hacia Arriba , Disfunción Ventricular Izquierda/sangre , Disfunción Ventricular Izquierda/fisiopatología , Disfunción Ventricular Izquierda/prevención & control , Función Ventricular Izquierda , Remodelación Ventricular
3.
Circ Heart Fail ; 13(1): e006277, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31957470

RESUMEN

BACKGROUND: Although empagliflozin was shown to profoundly reduce cardiovascular events in diabetic patients and blunt the decline in cardiac function in nondiabetic mice with established heart failure (HF), the mechanism of action remains unknown. METHODS AND RESULTS: We treated 2 rodent models of HF with 10 mg/kg per day empagliflozin and measured activation of the NLRP3 (nucleotide-binding domain-like receptor protein 3) inflammasome in the heart. We show for the first time that beneficial effects of empagliflozin in HF with reduced ejection fraction (HF with reduced ejection fraction [HFrEF]; n=30-34) occur in the absence of changes in circulating ketone bodies, cardiac ketone oxidation, or increased cardiac ATP production. Of note, empagliflozin attenuated activation of the NLRP3 inflammasome and expression of associated markers of sterile inflammation in hearts from mice with HFrEF, implicating reduced cardiac inflammation as a mechanism of empagliflozin that contributes to sustained function in HFrEF in the absence of diabetes mellitus. In addition, we validate that the beneficial cardiac effects of empagliflozin in HF with preserved ejection fraction (HFpEF; n=9-10) are similarly associated with reduced activation of the NLRP3 inflammasome. Lastly, the ability of empagliflozin to reduce inflammation was completely blunted by a calcium (Ca2+) ionophore, suggesting that empagliflozin exerts its benefit upon restoring optimal cytoplasmic Ca2+ levels in the heart. CONCLUSIONS: These data provide evidence that the beneficial cardiac effects of empagliflozin are associated with reduced cardiac inflammation via blunting activation of the NLRP3 inflammasome in a Ca2+-dependent manner and hence may be beneficial in treating HF even in the absence of diabetes mellitus.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Glucósidos/farmacología , Insuficiencia Cardíaca/tratamiento farmacológico , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Volumen Sistólico/efectos de los fármacos , Animales , Proteínas Portadoras/metabolismo , Cardiopatías/tratamiento farmacológico , Insuficiencia Cardíaca/fisiopatología , Inflamasomas/efectos de los fármacos , Inflamasomas/metabolismo , Masculino , Ratones Endogámicos C57BL , Nucleótidos/metabolismo , Volumen Sistólico/fisiología
4.
Mol Med ; 24(1): 3, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30134787

RESUMEN

BACKGROUND: Alterations in cardiac energy metabolism contribute to the development and severity of heart failure (HF). In severe HF, overall mitochondrial oxidative metabolism is significantly decreased resulting in a reduced energy reserve. However, despite the high prevalence of HF with preserved ejection fraction (HFpEF) in our society, it is not clear what changes in cardiac energy metabolism occur in HFpEF, and whether alterations in energy metabolism contribute to the development of contractile dysfunction. METHODS: We directly assessed overall energy metabolism during the development of HFpEF in Dahl salt-sensitive rats fed a high salt diet (HSD) for 3, 6 and 9 weeks. RESULTS: Over the course of 9 weeks, the HSD caused a progressive decrease in diastolic function (assessed by echocardiography assessment of E'/A'). This was accompanied by a progressive increase in cardiac glycolysis rates (assessed in isolated working hearts obtained at 3, 6, and 9 weeks of HSD). In contrast, the subsequent oxidation of pyruvate from glycolysis (glucose oxidation) was not altered, resulting in an uncoupling of glucose metabolism and a significant increase in proton production. Increased glucose transporter (GLUT)1 expression accompanied this elevation in glycolysis. Decreases in cardiac fatty acid oxidation and overall adenosine triphosphate (ATP) production rates were not observed in early HF, but both significantly decreased as HF progressed to HF with reduced EF (i.e. 9 weeks of HSD). CONCLUSIONS: Overall, we show that increased glycolysis is the earliest energy metabolic change that occurs during HFpEF development. The resultant increased proton production from uncoupling of glycolysis and glucose oxidation may contribute to the development of HFpEF.


Asunto(s)
Glucosa/metabolismo , Glucólisis , Insuficiencia Cardíaca/metabolismo , Animales , Cardiomegalia/fisiopatología , Corazón/fisiología , Insuficiencia Cardíaca/fisiopatología , Masculino , Miocardio/metabolismo , Oxidación-Reducción , Ratas Endogámicas Dahl , Cloruro de Sodio Dietético/administración & dosificación
5.
JACC Basic Transl Sci ; 2(4): 347-354, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30062155

RESUMEN

This study sought to determine whether the sodium/glucose cotransporter 2 (SGLT2) inhibitor empagliflozin improved heart failure (HF) outcomes in nondiabetic mice. The EMPA-REG OUTCOME (Empagliflozin, Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients) trial demonstrated that empagliflozin markedly prevented HF and cardiovascular death in subjects with diabetes. However, despite ongoing clinical trials in HF patients without type 2 diabetes, there are no objective and translational data to support an effect of SGLT2 inhibitors on cardiac structure and function, particularly in the absence of diabetes and in the setting of established HF. Male C57Bl/6 mice were subjected to either sham or transverse aortic constriction surgery to induce HF. Following surgery, mice that progressed to HF received either vehicle or empagliflozin for 2 weeks. Cardiac function was then assessed in vivo using echocardiography and ex vivo using isolated working hearts. Although vehicle-treated HF mice experienced a progressive worsening of cardiac function over the 2-week treatment period, this decline was blunted in empagliflozin-treated HF mice. Treatment allocation to empagliflozin resulted in an improvement in cardiac systolic function, with no significant changes in cardiac remodeling or diastolic dysfunction. Moreover, isolated hearts from HF mice treated with empagliflozin displayed significantly improved ex vivo cardiac function compared to those in vehicle-treated controls. Empagliflozin treatment of nondiabetic mice with established HF blunts the decline in cardiac function both in vivo and ex vivo, independent of diabetes. These data provide important basic and translational clues to support the evaluation of SGLT2 inhibitors as a treatment strategy in a broad range of patients with established HF.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA