Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 12(48): 54083-54093, 2020 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-33201676

RESUMEN

Mechanically robust, thermoresponsive, ion-conducting nanocomposite films are prepared from poly(2-phenylethyl methacrylate)-grafted cellulose nanocrystals (MxG-CNC-g-PPMA). One-component nanocomposite films of the polymer-grafted nanoparticle (PGN) MxG-CNC-g-PPMA are imbibed with 30 wt % imidazolium-based ionic liquid to produce flexible ion-conducting films. These films with 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (MxG-CNC-g-PPMA/[H]) not only display remarkable improvements in toughness (>25 times) and tensile strength (>70 times) relative to the corresponding films consisting of the ionic liquid imbibed in the two-component CNC/PPMA nanocomposite but also show higher ionic conductivity than the corresponding neat PPMA with the same weight percent of ionic liquid. Notably, the one-component film containing 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (MxG-CNC-g-PPMA/[E]) exhibits temperature-responsive ionic conduction. The ionic conductivity decreases at around 60 °C as a consequence of the lower critical solution temperature phase transition of the grafted polymer in the ionic liquid, which leads to phase separation. Moreover, holding the MxG-CNC-g-PPMA/[E] film at room temperature for 24 h returns the film to its original homogenous state. These materials exhibit properties relevant to thermal cutoff safety devices (e.g., thermal fuse) where a reduction in conductivity above a critical temperature is needed.

2.
Chem Sci ; 11(19): 5028-5036, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34122959

RESUMEN

A series of catalyst-free, room temperature dynamic bonds derived from a reversible thia-Michael reaction are utilized to access mechanically robust dynamic covalent network films. The equilibrium of the thiol addition to benzalcyanoacetate-based Michael-acceptors can be directly tuned by controlling the electron-donating/withdrawing nature of the Michael-acceptor. By modulating the composition of different Michael-acceptors in a dynamic covalent network, a wide range of mechanical properties and thermal responses can be realized. Additionally, the reported systems phase-separate in a process, coined dynamic reaction-induced phase separation (DRIPS), that yields reconfigurable phase morphologies and reprogrammable shape-memory behaviour as highlighted by the heat-induced folding of a predetermined structure.

3.
Phys Rev Lett ; 118(20): 207801, 2017 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-28581782

RESUMEN

Small angle x-ray scattering experiments on three model low molar mass diblock copolymer systems containing minority polylactide and majority hydrocarbon blocks demonstrate that conformational asymmetry stabilizes the Frank-Kasper σ phase. Differences in block flexibility compete with space filling at constant density inducing the formation of polyhedral shaped particles that assemble into this low symmetry ordered state with local tetrahedral coordination. These results confirm predictions from self-consistent field theory that establish the origins of symmetry breaking in the ordering of block polymer melts subjected to compositional and conformational asymmetry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA