Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microb Cell Fact ; 10: 18, 2011 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-21435272

RESUMEN

BACKGROUND: Isobutanol is a promising next-generation biofuel with demonstrated high yield microbial production, but the toxicity of this molecule reduces fermentation volumetric productivity and final titer. Organic solvent tolerance is a complex, multigenic phenotype that has been recalcitrant to rational engineering approaches. We apply experimental evolution followed by genome resequencing and a gene expression study to elucidate genetic bases of adaptation to exogenous isobutanol stress. RESULTS: The adaptations acquired in our evolved lineages exhibit antagonistic pleiotropy between minimal and rich medium, and appear to be specific to the effects of longer chain alcohols. By examining genotypic adaptation in multiple independent lineages, we find evidence of parallel evolution in marC, hfq, mdh, acrAB, gatYZABCD, and rph genes. Many isobutanol tolerant lineages show reduced RpoS activity, perhaps related to mutations in hfq or acrAB. Consistent with the complex, multigenic nature of solvent tolerance, we observe adaptations in a diversity of cellular processes. Many adaptations appear to involve epistasis between different mutations, implying a rugged fitness landscape for isobutanol tolerance. We observe a trend of evolution targeting post-transcriptional regulation and high centrality nodes of biochemical networks. Collectively, the genotypic adaptations we observe suggest mechanisms of adaptation to isobutanol stress based on remodeling the cell envelope and surprisingly, stress response attenuation. CONCLUSIONS: We have discovered a set of genotypic adaptations that confer increased tolerance to exogenous isobutanol stress. Our results are immediately useful to further efforts to engineer more isobutanol tolerant host strains of E. coli for isobutanol production. We suggest that rpoS and post-transcriptional regulators, such as hfq, RNA helicases, and sRNAs may be interesting mutagenesis targets for future global phenotype engineering.


Asunto(s)
Butanoles/toxicidad , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Tolerancia a Medicamentos , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Evolución Molecular , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Genotipo , Lipoproteínas/química , Lipoproteínas/genética , Lipoproteínas/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/química , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA