RESUMEN
Aedes albopictus (Diptera: Culicidae) distribution is bounded to a subtropical area in Argentina, while Aedes aegypti (Diptera: Culicidae) covers both temperate and subtropical regions. We assessed thermal and photoperiod conditions on dormancy status, development time and mortality for these species from subtropical Argentina. Short days (8 light : 16 dark) significantly increased larval development time for both species, an effect previously linked to diapause incidence. Aedes albopictus showed higher mortality than Ae. aegypti at 16 °C under long day treatments (16 light : 8 dark), which could indicate a lower tolerance to a sudden temperature decrease during the summer season. Aedes albopictus showed a slightly higher percentage of dormant eggs from females exposed to a short day, relative to previous research in Brazilian populations. Since we employed more hours of darkness, this could suggest a relationship between day-length and dormancy intensity. Interestingly, local Ae. aegypti presented dormancy similar to Ae. albopictus, in accordance with temperate populations. The minimum dormancy in Ae. albopictus would not be sufficient to extend its bounded distribution. We believe that these findings represent a novel contribution to current knowledge about the ecophysiology of Ae. albopictus and Ae. aegypti, two species with great epidemiological relevance in this subtropical region.
Asunto(s)
Aedes/fisiología , Diapausa de Insecto , Rasgos de la Historia de Vida , Fotoperiodo , Temperatura , Aedes/crecimiento & desarrollo , Animales , Argentina , Femenino , Larva/crecimiento & desarrollo , Larva/fisiología , Masculino , Pupa/crecimiento & desarrollo , Pupa/fisiologíaRESUMEN
We assessed the prevalence of infection with Trypanosoma cruzi, parasite genotypes (discrete typing units, DTUs), and the host-feeding sources of domestic and peridomestic Triatoma infestans Klug and Triatoma eratyrusiformis Del Ponte in eight rural communities of the subandean Calchaqui valleys in northwestern Argentina. We sought to analyze their epidemiological role in the context of routine vector surveillance and control actions. Infection with T. cruzi was determined by optic microscopy or polymerase chain reaction (PCR) amplification of the hypervariable region of kinetoplast DNA minicircles. Parasite genotypes were identified through a multi PCR-based strategy. Bloodmeal contents were tested with a direct ELISA assay against nine antisera. Human sleeping quarters (domiciles) and peridomestic dry-shrub fences concentrated most of the T. infestans and T. eratyrusiformis infected with T. cruzi, respectively. The most frequent host-feeding sources of T. infestans were chickens (73.1%) in peridomiciles and humans (73.3%) in domiciles, whereas T. eratyrusiformis fed more often on cavid rodents (92.6%), which thrived in the dry-shrub fences. The main T. cruzi DTU identified in both vectors was T. cruzi I (TcI). Triatoma eratyrusiformis was implicated in the local circulation of TcI among cavies and perhaps mice, but infection with other typically domestic DTUs (TcVI and TcII/TcV/TcVI) indicated overlap between (peri)domestic transmission cycles in both vector species. Because dry-shrub fences were not targeted for routine insecticide spraying, they may act as sources of (peri)domestic reinfestation. Triatoma eratyrusiformis is an emergent secondary vector of T. cruzi and plays a significant role in the local transmission of T. cruzi.