Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mol Reprod Dev ; 88(9): 598-604, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34427017

RESUMEN

Infertility is a multifactorial and polygenic disease. A vast majority of infertility is still unexplained despite modern diagnostic techniques. Oxidative stress is considered a factor for male infertility but etiology in terms of functional gene polymorphism and experimental studies on human subjects is scarcely reported. The aim of the study was to investigate the status of three antioxidant enzymes; catalase, superoxide dismutase (SOD), and glutathione reduced (GSH) in clinically diagnosed infertile males and find the potential association of CAT gene variant in the promoter region -21 A/T (rs7943316). The study consisted of 55 clinically diagnosed infertile males and 50 non-infertile volunteers. The activity of antioxidant enzymes was measured through a spectrophotometer. Polymerase chain reaction-restriction fragment length polymorphism was performed for genotyping of single-nucleotide polymorphism. Catalase enzyme activity was significantly decreased while SOD and GSH were substantially increased (p ≤ 0.01) in infertile men in comparison to non-infertile. CAT gene variant rs7943316 had shown significant association in dominant, recessive model and allelic frequencies. The study concludes that rs7943316 has a substantial role in male infertility. The outcome of the study may help in resolving idiopathic infertility cases and may help in evolving novel diagnostic and therapeutic approaches. Other variants of CAT and antioxidant genes are suggested to ascertain further insight.


Asunto(s)
Antioxidantes , Infertilidad Masculina , Estudios de Casos y Controles , Catalasa/genética , Humanos , Infertilidad Masculina/genética , Masculino , Polimorfismo de Nucleótido Simple , Superóxido Dismutasa/genética
2.
Cells ; 9(10)2020 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-33050539

RESUMEN

Tumor cell heterogeneity is primarily dictated by mutational changes, sometimes leading to clones that undergo a metastatic switch. However, little is known about tumor heterogeneity following chemotherapy perturbation. Here we studied the possible involvement of tumor-derived extracellular vesicles, often referred to as tumor-derived microparticles (TMPs), as mediators of the metastatic switch in the tumor microenvironment by hindering cell adhesion properties. Specifically, we show that highly metastatic or chemotherapy-treated breast cancer cells shed an increased number of TMPs compared to their respective controls. We found that these TMPs substantially reduce cell adhesion and disrupt actin filament structure, therefore increasing their biomechanical force pace, further implicating tumor cell dissemination as part of the metastatic cascade. Our results demonstrate that these pro-metastatic effects are mediated in part by CD44 which is highly expressed in TMPs obtained from highly metastatic cells or cells exposed to chemotherapy when compared to cells with low metastatic potential. Consequently, when we inhibited CD44 expression on TMPs by a pharmacological or a genetic approach, increased tumor cell adhesion and re-organized actin filament structure were observed. We also demonstrated that breast cancer patients treated with paclitaxel chemotherapy exhibited increased CD44-expressing TMPs. Overall, our study provides further insights into the role of TMPs in promoting metastasis, an effect which is augmented when tumor cells are exposed to chemotherapy.


Asunto(s)
Adhesión Celular/fisiología , Micropartículas Derivadas de Células/metabolismo , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Adulto , Neoplasias de la Mama/patología , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Micropartículas Derivadas de Células/patología , Vesículas Extracelulares , Femenino , Humanos , Receptores de Hialuranos/metabolismo , Persona de Mediana Edad , Metástasis de la Neoplasia/genética , Paclitaxel/farmacología
3.
Food Res Int ; 132: 109061, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32331671

RESUMEN

Genotypes of bananas and plantains have been studied for biofortification purposes, mainly due to content of resistant starch (RS) and polyphenols. This study aims to identify banana and plantain genotypes with a high content of resistant starch, phenolic compounds and minerals, and to evaluate the impact of the ripening stage and domestic thermal processing to select superior genotypes with high levels of functional compounds. In this study, it was used bunches of bananas and plantain genotypes. The phenolic compounds profiles were determined by HPLC-DAD in pulps and peels. The resistant starch and the minerals (K, Na, Zn, Cu and Fe) were evaluated in pulps and peels of unripe fruit. The results of phenolic compounds were studied in three ripening stages, and after thermal processing (ripe stage) of two genotypes, which were most promising for biofortification studies. Resistant starch and minerals were analysed in the unripe fruits. The peel biomass showed the highest values of phenolic compounds and minerals. The total starch content in the pulp varied from 42.3% ('FC06-02') to 80.6% ('Pelipita'). Plantains and cooking bananas presented the highest contents of starch and resistant starch (stage 2 - green with yellow traces). The pulps of the dessert genotypes 'Khai' and 'Ouro da Mata', and cooking genotype 'Pacha Nadam' stood out due to their minerals high contents (P, K and Fe; Zn and Fe; Ca, Mg and Zn, respectively). The dessert bananas (e.g., 'Ney Poovan') and cooking bananas (e.g., 'Tiparot') had the highest concentrations of phenolic compounds, mainly in ripe fruit (stage 5 - yellow with green). In addition, the thermal processing of Musa spp. fruit led to increasing these secondary metabolites, mainly the cooking of fruit with peel by boiling, which should be preferred in domestic preparations.


Asunto(s)
Antioxidantes/análisis , Culinaria , Frutas/química , Musa/química , Valor Nutritivo , Plantago/química , Catequina/análisis , Minerales/análisis , Musa/genética , Fenoles/análisis , Fitomejoramiento , Polifenoles/análisis , Almidón
4.
Lab Chip ; 19(21): 3678-3684, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31570906

RESUMEN

A recurring goal in biology and biomedicine research is to access the biochemistry of biological processes in liquids that represent the environmental conditions of living organisms. These demands are becoming even more specific as microscopy techniques are fast evolving in the era of single cell analysis. In the modality of chemical probes, synchrotron infrared spectroscopy (µ-FTIR) is a technique that is extremely sensitive to vibrational responses of materials; however, the classical optical limits prevent the technique to access the biochemistry of specimens at the subcellular level. In addition, due to the intricate environmental requirements and strong infrared absorption of water, µ-FTIR of bioprocesses in liquids remains highly challenging. In phase with these challenges, on-chip liquid cells emerge as a versatile alternative to control the water thickness while providing a biocompatible chemical environment for analytical analyses. In this work we report the development of a liquid platform specially designed for nanoscale infrared analysis of biomaterials in wet environments. A key advantage of our designed platform is the use of graphene as an optical window that interfaces wet and dry environments in the liquid cell. By combining near-field optical microscopy and synchrotron infrared radiation, we measure the nanoscale fingerprint IR absorbance of a variety of liquids often used in biological studies. Further, we demonstrate the feasibility of the platform for the chemical analysis of protein clusters immersed in water with a clear view of the proteins' secondary structure signatures. The simplicity of the proposed platform combined with the high quality of our data makes our findings a template for future microfluidic devices targeting dynamic nanoscale-resolved chemical analysis.


Asunto(s)
Grafito , Sincrotrones , Dispositivos Laboratorio en un Chip , Espectroscopía Infrarroja por Transformada de Fourier
5.
Int J Food Microbiol ; 306: 108264, 2019 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-31323448

RESUMEN

Suitable conditions of temperature and humidity are required to maintain wheat grains quality, but during processing and storage, the grains can be exposed to adverse environmental conditions and presence of infectious fungi. Fusarium graminearum, the main causal agent of Fusarium head blight on wheat, affects crop yields and grain quality by alteration of their biochemical components and mycotoxin contamination, which reduces the possibilities of wheat end use and compromises food safety. Lipid degradation by hydrolytic, oxidative and microbial deterioration is the predominant cause of the loss of sensory acceptability, nutritional value and baking quality. The aim of this research was to determine the influence of adverse environmental conditions -as the increasing moisture - on lipid patterns of whole wheat flours contaminated with F. graminearum in relation to the infection degree. In vitro cultures of F. graminearum were carried out on wheat grains under different degrees of relative humidity (11, 50, 75 and 100%) throughout 45 days of incubation at 28 °C. The fungal biomass measured by q-PCR increased proportionally with the humidity. A decrease in the signals of saturated (palmitic and estearic) and unsaturated (oleic, linoleic and linolenic) fatty acids, analyzed as fatty acid methyl esters (FAMEs) by GC-MS, was observed in relation with the humidity and infection degree. The degradation rate of the lipids was high during the first 15 days of incubation, reaching the fatty acids content, values around 20-40% of those found in the control. From that moment on, the rate of degradation was slower or even null. It was observed that in all treatments, the linolenic acid reached the highest degradation ratio in comparison with the other fatty acids, which may be caused by the action of lipoxygenases. The lipase activity and the content of deoxynivalenol were also determinate on the flours. The lipase activity increased until day 25 of incubation reaching twice the initial value. The deoxynivalenol content also increased along incubation while fatty acids decreased. Our results demonstrated that the magnitude in the signal of fatty acids in whole wheat flours varied in relation to the degree of humidity and fungal infection of the grains from which they were obtained. Otherwise, lipids and their oxidation products are related with the pathogenesis and production of mycotoxins. These observations highlight the importance of an adequate manipulation of wheat grains on the processing chain to prevent quality changes and mycotoxins contamination.


Asunto(s)
Ácidos Grasos/análisis , Fusarium/metabolismo , Tricotecenos/análisis , Triticum/microbiología , Agua/análisis , Grano Comestible/microbiología , Contaminación de Alimentos/análisis , Humedad , Metabolismo de los Lípidos/fisiología , Micotoxinas/análisis , Enfermedades de las Plantas/microbiología
6.
ACS Nano ; 12(5): 4312-4320, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29694776

RESUMEN

Graphene is regarded as the toughest two-dimensional material (highest in-plane elastic properties) and, as a consequence, it has been employed/proposed as an ultrathin membrane in a myriad of microfluidic devices. Yet, an experimental investigation of eventual variations on the apparent elastic properties of a suspended graphene membrane in contact with air or water is still missing. In this work, the mechanical response of suspended monolayer graphene membranes on a microfluidic platform is investigated via scanning probe microscopy experiments. A high elastic modulus is measured for the membrane when the platform is filled with air, as expected. However, a significant apparent softening of graphene is observed when water fills the microfluidic system. Through molecular dynamics simulations and a phenomenological model, we associate such softening to a water-induced uncrumpling process of the suspended graphene membrane. This result may bring substantial modifications on the design and operation of microfluidic devices which exploit pressure application on graphene membranes.

7.
Rev Argent Microbiol ; 47(3): 245-50, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26343390

RESUMEN

Fusarium Head Blight is an important wheat disease in the Argentine Pampas region, being Fusarium graminearum the predominant pathogen. DNA polymorphism of the isolates was analyzed by IGS-RFLP and ISSR. IGS-RFLP and ISSR profiling were carried out using six endonucleases and eight primers, respectively. IGS-RFLP yielded 41 bands, 30 of which were polymorphic while ISSR produced 87 bands with 47 polymorphic bands. Both markers showed genetic variability among the analyzed isolates; however, IGS-RFLP was more efficient than ISSR, showing a higher polymorphic average (59.91%) than the latter (44.11%). The averages of polymorphic information content (PIC) were 0.211 and 0.129, respectively. Twenty haplotypes were identified by IGS-RFLP and 15 haplotypes by ISSR. Genotype clustering within dendrograms was different for both types of markers. The genetic groups obtained by IGS-RFLP showed a partial association to geographic origin. This is the first report on genetic variability of F. graminearum isolates from wheat in Argentina using IGS-RFLP and ISSR markers.


Asunto(s)
Fusarium/genética , Enfermedades de las Plantas/microbiología , Triticum/microbiología , Argentina , ADN de Hongos/genética , ADN de Hongos/aislamiento & purificación , ADN Intergénico , Fusarium/aislamiento & purificación , Genes Fúngicos , Marcadores Genéticos , Variación Genética , Genotipo , Haplotipos/genética , Repeticiones de Microsatélite , Polimorfismo de Longitud del Fragmento de Restricción
8.
Rev. argent. microbiol ; 47(3): 245-250, set. 2015.
Artículo en Inglés | LILACS | ID: biblio-1129862

RESUMEN

La fusariosis de la espiga de trigo es una importante enfermedad para la región pampeana Argentina; Fusarium graminearum es el principal patógeno asociado. Se estudió el polimorfismo del ADN de un conjunto de aislamientos utilizando las técnicas de IGS-RFLP e ISSR. La técnica de IGS-RFLP produjo 41 bandas, 30 de ellas fueron polimórficas. El análisis de los ISSR mostró 87 bandas con 47 bandas polimórficas. La primera de estas metodologías fue más eficiente, ya que detectó mayor promedio polimórfico (59,91%) que la segunda (44,11%). Los valores promedio del contenido de información polimórfica (PIC) fueron 0,211 y 0,129, respectivamente. Se identificaron 20 haplotipos por IGS-RFLP, mientras que el análisis de los ISSR reveló 15 haplotipos. La agrupación de genotipos obtenida en ambos dendrogramas fue diferente. Los grupos genéticos obtenidos por la técnica de IGS-RFLP mostraron una asociación parcial con el origen geográfico. Este es el primer reporte que analiza la variabilidad genética en poblaciones de F. graminearum de trigo empleando marcadores IGS-RFLP e ISSR en Argentina


Fusarium Head Blight is an important wheat disease in the Argentine Pampas region, being Fusarium graminearum the predominant pathogen. DNA polymorphism of the isolates was analyzed by IGS-RFLP and ISSR. IGS-RFLP and ISSR profiling were carried out using six endonucleases and eight primers, respectively. IGS-RFLP yielded 41 bands, 30 of which were polymorphic while ISSR produced 87 bands with 47 polymorphic bands. Both markers showed genetic variability among the analyzed isolates; however, IGS-RFLP was more efficient than ISSR, showing a higher polymorphic average (59.91%) than the latter (44.11%). The averages of polymorphic information content (PIC) were 0.211 and 0.129, respectively. Twenty haplotypes were identified by IGS-RFLP and 15 haplotypes by ISSR. Genotype clustering within dendrograms was different for both types of markers. The genetic groups obtained by IGS-RFLP showed a partial association to geographic origin. This is the first report on genetic variability of F. graminearum isolates from wheat in Argentina using IGS-RFLP and ISSR markers


Asunto(s)
Variación Genética , Triticum/microbiología , Fusariosis/microbiología , Fusarium/genética , Fusarium/aislamiento & purificación
9.
J Basic Microbiol ; 54 Suppl 1: S170-7, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24403124

RESUMEN

Since enzymatic degradation is a mechanism or component of the aggressiveness of a pathogen, enzymatic activities from a Fusarium graminearum isolate obtained from infected wheat spikes of Argentina Pampa region were studied in order to understand the disease progression, tending to help disease control. In particular, the significance of the study of polygalacturonase activity is based on that such activity is produced in the early stages of infection on the host, suggesting a crucial role in the establishment of disease. In this sense, polygalacturonase activity produced by this microorganism has been purified 375 times from 2-day-old culture filtrates by gel filtration and ion-exchange chromatography successively. The purified sample showed two protein bands in sodium dodecyl sulfate-polyacrylamide gels, with a molecular mass of 40 and 55 kDa. The protein bands were identified as an endopolygalacturonase and as a serine carboxypeptidase of F. graminearum, respectively, by peptide mass fingerprinting (matrix-assisted laser desorption/ionization time-of-flight (MALDI TOF/TOF) fragment ion analysis). The pattern of substrate degradation analyzed by thin layer chromatography confirmed the mode of action of the enzyme as an endopolygalacturonase. High activity of the polygalacturonase against polygalacturonic acid was observed between 4 and 6 of pH, and between 30 and 50 °C, being 5 and 50 °C the optimum pH and temperature, respectively. The enzyme was fully stable at pH 5 for 120 min and 30 °C and sensible to the presence of some metal ions. This information would contribute to understand the most favorable environmental conditions for establishment of the disease.


Asunto(s)
Fusarium/enzimología , Pectinas/metabolismo , Poligalacturonasa/aislamiento & purificación , Poligalacturonasa/metabolismo , Proteoma/análisis , Argentina , Cromatografía en Gel , Cromatografía por Intercambio Iónico , Cromatografía en Capa Delgada , Electroforesis en Gel de Poliacrilamida , Estabilidad de Enzimas , Fusarium/química , Fusarium/aislamiento & purificación , Concentración de Iones de Hidrógeno , Peso Molecular , Enfermedades de las Plantas/microbiología , Poligalacturonasa/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Temperatura , Triticum/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA