Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros











Intervalo de año de publicación
1.
Plant Cell Environ ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39248578

RESUMEN

Although it powers photosynthesis, ultraviolet-A1 radiation (UV-A1) is usually not defined as photosynthetically active radiation (PAR). However, the quantum yield (QY) with which UV-A1 drives net photosynthesis rate (A) is unknown, as are the kinetics of A and chlorophyll fluorescence under constant UV-A1 exposure. We measured A in leaves of six genotypes at four spectra peaking at 365, 385, 410 and 450 nm, at intensities spanning 0-300 µmol m s-1. All treatments powered near-linear increases in A in a wavelength-dependent manner. QY at 365 and 385 nm was linked to the apparent concentration of flavonoids, implicating the pigment in reductions of photosynthetic efficiency under UV-A1; in several genotypes, A under 365 and 385 nm was negative regardless of illumination intensity, suggesting very small contributions of UV-A1 radiation to CO2 fixation. Exposure to treatment spectra for 30 min caused slow increases in nonphotochemical quenching, transient reductions in A and dark-adapted maximum quantum yield of photosystem II, that depended on wavelength and intensity, but were generally stronger the lower the peak wavelength was. We conclude that UV-A1 generally powers A, but its definition as PAR requires additional evidence of its capacity to significantly increase whole-canopy carbon uptake in nature.

2.
J Exp Bot ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39171726

RESUMEN

Accounting for the dynamic responses of photosynthesis and photoprotection to naturally fluctuating irradiance can improve predictions of plant performance in the field, but the variation of these dynamics within crop canopies is poorly understood. We conducted a detailed study of dynamic and steady-state photosynthesis, photoprotection, leaf pigmentation, and stomatal anatomy in four leaf layers (100, 150, 200 and 250 cm from the floor) of a fully-grown tomato canopy in the greenhouse. We found that leaves at the top of the canopy exhibited higher photosynthetic capacity and slightly faster photosynthetic induction compared to lower-canopy leaves, accompanied by higher stomatal conductance and a faster activation of carboxylation and linear electron transport capacities. In upper-canopy leaves, non-photochemical quenching showed faster induction and relaxation after in- and decreases in irradiance, allowing for more effective photoprotection in these leaves. Despite these observed differences in transient responses between leaf layers, steady-state rather than dynamic photosynthesis traits were more influential for predicting photosynthesis under fluctuating irradiance. Also, a model analysis revealed that time-averaged photosynthesis under fluctuating irradiance could be accurately predicted by one set of Rubisco activation/deactivation parameters across all four leaf layers, thereby greatly simplifying future modelling efforts of whole-canopy photosynthesis.

4.
Front Plant Sci ; 15: 1393803, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957608

RESUMEN

The cultivation of medical cannabis (Cannabis sativa L.) is expanding in controlled environments, driven by evolving governmental regulations for healthcare supply. Increasing inflorescence weight and plant specialized metabolite (PSM) concentrations is critical, alongside maintaining product consistency. Medical cannabis is grown under different spectra and photosynthetic photon flux densities (PPFD), the interaction between spectrum and PPFD on inflorescence weight and PSM attracts attention by both industrialists and scientists. Plants were grown in climate-controlled rooms without solar light, where four spectra were applied: two low-white spectra (7B-20G-73R/Narrow and 6B-19G-75R/2Peaks), and two high-white (15B-42G-43R/Narrow and 17B-40G-43R/Broad) spectra. The low-white spectra differed in red wavelength peaks (100% 660 nm, versus 50:50% of 640:660 nm), the high-white spectra differed in spectrum broadness. All four spectra were applied at 600 and 1200 µmol m-2 s-1. Irrespective of PPFD, white light with a dual red peak of 640 and 660 nm (6B-19G-75R/2Peaks) increased inflorescence weight, compared to white light with a single red peak of 660 nm (7B-20G-73R/Narrow) (tested at P = 0.1); this was associated with higher total plant dry matter production and a more open plant architecture, which likely enhanced light capture. At high PPFD, increasing white fraction and spectrum broadness (17B-40G-43R/Broad) produced similar inflorescence weights compared to white light with a dual red peak of 640 and 660 nm (6B-19G-75R/2Peaks). This was caused by an increase of both plant dry matter production and dry matter partitioning to the inflorescences. No spectrum or PPFD effects on cannabinoid concentrations were observed, although at high PPFD white light with a dual red peak of 640 and 660 nm (6B-19G-75R/2Peaks) increased terpenoid concentrations compared to the other spectra. At low PPFD, the combination of white light with 640 and 660 nm increased photosynthetic efficiency compared with white light with a single red peak of 660nm, indicating potential benefits in light use efficiency and promoting plant dry matter production. These results indicate that the interaction between spectrum and PPFD influences plant dry matter production. Dividing the light energy in the red waveband over both 640 and 660 nm equally shows potential in enhancing photosynthesis and plant dry matter production.

5.
Plant Cell Environ ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39011936

RESUMEN

Understanding photosynthetic acclimation to elevated CO2 (eCO2) is important for predicting plant physiology and optimizing management decisions under global climate change, but is underexplored in important horticultural crops. We grew three crops differing in stomatal density-namely chrysanthemum, tomato, and cucumber-at near-ambient CO2 (450 µmol mol-1) and eCO2 (900 µmol mol-1) for 6 weeks. Steady-state and dynamic photosynthetic and stomatal conductance (gs) responses were quantified by gas exchange measurements. Opening and closure of individual stomata were imaged in situ, using a novel custom-made microscope. The three crop species acclimated to eCO2 with very different strategies: Cucumber (with the highest stomatal density) acclimated to eCO2 mostly via dynamic gs responses, whereas chrysanthemum (with the lowest stomatal density) acclimated to eCO2 mostly via photosynthetic biochemistry. Tomato exhibited acclimation in both photosynthesis and gs kinetics. eCO2 acclimation in individual stomatal pore movement increased rates of pore aperture changes in chrysanthemum, but such acclimation responses resulted in no changes in gs responses. Although eCO2 acclimation occurred in all three crops, photosynthesis under fluctuating irradiance was hardly affected. Our study stresses the importance of quantifying eCO2 acclimatory responses at different integration levels to understand photosynthetic performance under future eCO2 environments.

6.
J Exp Bot ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829698

RESUMEN

Whether green light promotes or represses plant growth is an unresolved but important question, warranting a global meta-analysis of published data. We collected 136 datasets from 48 publications on 17 crop species, and calculated the green light effect for a range of plant traits. For each trait the effect was calculated as the ratio between the trait value attained under a red/blue background light plus green, divided by the value attained under the background light only, both having the same light intensity. Generally, green light strongly increased intrinsic water use efficiency (15%), the shoot-to-root ratio (13%), and decreased stomatal conductance (-15%). Moreover, green light increased fresh weight to a small extent (4%), but not plant dry weight, resulting in a reduced dry matter content (-2%). Hence, green light is similarly effective at increasing biomass as red and blue light. Green light also showed to increase leaf area (7%) and specific leaf area (4%; i.e., thinner leaves). Furthermore, effects of green light were species-dependent, with positive effects on biomass for lettuce and microgreens, and negative effects in basil and tomato. Our data suggest that future research should focus on the role of green light in modulating water loss, its putative role as a shade signal, and the causes for its species-specific effects on crop biomass.

7.
Ann Bot ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38946023

RESUMEN

BACKGROUND AND AIMS: Long-term exposure over several days to Far-Red (FR) increases leaf expansion, while short-term exposure (minutes) may enhance the PSII operating efficiency (ϕPSII). The interaction between these responses at different time scales, and their impact on photosynthesis at whole-plant level is not well understood. Our study aimed to assess the effects of FR in an irradiance mimicking the spectrum of sunlight (referred to as artificial solar irradiance) both in the long and short-term, on whole-plant CO2 assimilation rates and in leaves at different positions in the plant. METHODS: Tomato (Solanum lycopersicum) plants were grown under artificial solar irradiance conditions with either a severely reduced or normal fraction of FR(SUN(FR-) vs. SUN). To elucidate the interplay between the growth light treatment and the short-term reduction of FR, we investigated this interaction at both the whole-plant and leaf level. At whole-plant level, CO2 assimilation rates were assessed under artificial solar irradiance with a normal and a reduced fraction of FR. At the leaf level, the effects of removal and presence of FR (0FR and 60FR) during transition from high to low light on CO2 assimilation rates and chlorophyll fluorescence were evaluated in upper and lower leaves. KEY RESULTS: SUN(FR-) plants had lower leaf area, shorter stems, and darker leaves than SUN plants. While reducing FR during growth did not affect whole-plant photosynthesis under high light intensity, it had a negative impact at low light intensity. Short-term FR removal reduced both plant and leaf CO2 assimilation rates, but only at low light intensity and irrespective of the growth light treatment and leaf position. Interestingly, the kinetics of ϕPSII from high to low light were accelerated by 60FR, with a larger effect in lower leaves of SUN than in SUN(FR-) plants. CONCLUSIONS: Growing plants with a reduced amount of FR light lowers whole-plant CO2 assimilation rates at low light intensity through reduced leaf area, despite maintaining similar leaf-level CO2 assimilation to leaves grown with a normal amount of FR. The short-term removal of FR brings about significant but marginal reductions in photosynthetic efficiency at the leaf level, regardless of the long-term growth light treatment.

8.
Physiol Plant ; 176(4): e14410, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38945685

RESUMEN

Maximal sunlight intensity varies diurnally due to the earth's rotation. Whether this slow diurnal pattern influences the photoprotective capacity of plants throughout the day is unknown. We investigated diurnal variation in NPQ, along with NPQ capacity, induction, and relaxation kinetics after transitions to high light, in tomato plants grown under diurnal parabolic (DP) or constant (DC) light intensity regimes. DP light intensity peaked at midday (470 µmol m-2 s-1) while DC stayed constant at 300 µmol m-2 s-1 at a similar 12-hour photoperiod and daily light integral. NPQs were higher in the morning and afternoon at lower light intensities in DP compared to DC, except shortly after dawn. NPQ capacity increased from midday to the end of the day, with higher values in DP than in DC. At high light ΦPSII did not vary throughout the day, while ΦNPQ varied consistently with NPQ capacity. Reduced ΦNO suggested less susceptibility to photodamage at the end of the day. NPQ induction was faster at midday than at the start of the day and in DC than in DP, with overshoot occurring in the morning and midday but not at the end of the day. NPQ relaxation was faster in DP than in DC. The xanthophyll de-epoxidation state and reduced demand for photochemistry could not explain the observed diurnal variations in photoprotective capacity. In conclusion, this study showed diurnal variation in regulated photoprotective capacity at moderate growth light intensity, which was not explained by instantaneous light intensity or increasing photoinhibition over the day and was influenced by acclimation to constant light intensity.


Asunto(s)
Ritmo Circadiano , Luz , Solanum lycopersicum , Solanum lycopersicum/efectos de la radiación , Solanum lycopersicum/fisiología , Solanum lycopersicum/metabolismo , Ritmo Circadiano/fisiología , Ritmo Circadiano/efectos de la radiación , Fotosíntesis/efectos de la radiación , Fotosíntesis/fisiología , Fotoperiodo , Xantófilas/metabolismo , Luz Solar , Clorofila/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Cinética , Hojas de la Planta/efectos de la radiación , Hojas de la Planta/fisiología , Hojas de la Planta/metabolismo
9.
Front Plant Sci ; 15: 1383100, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38745919

RESUMEN

In controlled environment agriculture, customized light treatments using light-emitting diodes are crucial to improving crop yield and quality. Red (R; 600-700 nm) and blue light (B; 400-500 nm) are two major parts of photosynthetically active radiation (PAR), often preferred in crop production. Far-red radiation (FR; 700-800 nm), although not part of PAR, can also affect photosynthesis and can have profound effects on a range of morphological and physiological processes. However, interactions between different red and blue light ratios (R:B) and FR on promoting yield and nutritionally relevant compounds in crops remain unknown. Here, lettuce was grown at 200 µmol m-2 s-1 PAR under three different R:B ratios: R:B87.5:12.5 (12.5% blue), R:B75:25 (25% blue), and R:B60:40 (40% blue) without FR. Each treatment was also performed with supplementary FR (50 µmol m-2 s-1; R:B87.5:12.5+FR, R:B75:25+FR, and R:B60:40+FR). White light with and without FR (W and W+FR) were used as control treatments comprising of 72.5% red, 19% green, and 8.5% blue light. Increasing the R:B ratio from R:B87.5:12.5 to R:B60:40, there was a decrease in fresh weight (20%) and carbohydrate concentration (48% reduction in both sugars and starch), whereas pigment concentrations (anthocyanins, chlorophyll, and carotenoids), phenolic compounds, and various minerals all increased. These results contrasted the effects of FR supplementation in the growth spectra; when supplementing FR to different R:B backgrounds, we found a significant increase in plant fresh weight, dry weight, total soluble sugars, and starch. Additionally, FR decreased concentrations of anthocyanins, phenolic compounds, and various minerals. Although blue light and FR effects appear to directly contrast, blue and FR light did not have interactive effects together when considering plant growth, morphology, and nutritional content. Therefore, the individual benefits of increased blue light fraction and supplementary FR radiation can be combined and used cooperatively to produce crops of desired quality: adding FR increases growth and carbohydrate concentration while increasing the blue fraction increases nutritional value.

10.
Front Plant Sci ; 15: 1386950, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38699540

RESUMEN

High planting densities achieve high light interception and harvestable yield per area but at the expense of product quality. This study aimed to maintain high light interception without negative impacts on fruit quality. Dwarf tomato was grown at four densities in a climate-controlled room-at two constant densities (high and low) and two dynamic spacing treatments (maintaining 90% and 75% ground coverage by decreasing planting density in 3-4 steps)-resulting in ~100, 19, 54, and 41 plants/m2 averaged over 100 days of cultivation, respectively. Constant high density resulted in the highest light use efficiency (LUE; 7.7 g fruit fresh weight per mol photons incident on the canopy) and the highest harvestable fruit yield (11.1 kg/m2) but the lowest fruit size and quality. Constant low density resulted in the lowest LUE and yield (2.3 g/mol and 3.2 kg/m2, respectively), but higher fruit size and quality than high density. Compared to low density, maintaining 90% ground coverage increased yield (9.1 kg/m2) and LUE (6.4 g/mol). Maintaining 75% ground coverage resulted in a 7.2 kg/m2 yield and 5.1 g/mol LUE. Both dynamic spacing treatments attained the same or slightly reduced fruit quality compared to low density. Total plant weight per m2 increased with planting density and saturated at a constant high density. Assimilate shortage at the plant level and flower abortion lowered harvestable fruit yield per plant, sweetness, and acidity under constant high density. Harvestable fruit yield per plant was the highest under dynamic spacing and low density. Under constant high density, morphological responses to lower light availability per plant-i.e., higher specific leaf area, internode elongation, and increased slenderness-coincided with the improved whole-plant LUE (g plant dry weight per mol photons). We conclude that a constant high planting density results in the highest harvestable fruit yield per area, but with reduced fruit quality. Dynamic spacing during cultivation produces the same fruit quality as constant low density, but with more than double the harvestable yield per area.

11.
Trends Plant Sci ; 29(5): 572-588, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38494370

RESUMEN

In controlled environment agriculture (CEA), light is used to impact terpenoid production and improve plant quality. In this review we discuss various aspects of light as important regulators of terpenoid production in different plant organs. Spectral quality primarily modifies terpenoid profiles, while intensity and photoperiod influence abundances. The central regulator of light signal transduction elongated hypocotyl 5 (HY5) controls transcriptional regulation of terpenoids under UV, red (R), and blue (B) light. The larger the fraction of R and green (G) light, the more beneficial the effect on monoterpenoid and sesquiterpenoid biosynthesis, and such an effect may depend on the presence of B light. A large fraction of R light is mostly detrimental to tetraterpenoid production. We conclude that light is a promising tool to steer terpenoid production and potentially tailor the quality of plants.


Asunto(s)
Luz , Plantas , Terpenos , Regulación de la Expresión Génica de las Plantas , Plantas/metabolismo , Terpenos/metabolismo
12.
J Exp Bot ; 75(10): 2994-3008, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38436737

RESUMEN

Triose phosphate utilization (TPU) limitation is one of the three biochemical limitations of photosynthetic CO2 assimilation rate in C3 plants. Under TPU limitation, abrupt and large transitions in light intensity cause damped oscillations in photosynthesis. When plants are salt-stressed, photosynthesis is often down-regulated particularly under dynamic light intensity, but how salt stress affects TPU-related dynamic photosynthesis is still unknown. To elucidate this, tomato (Solanum lycopersicum) was grown with and without sodium chloride (NaCl, 100 mM) stress for 13 d. Under high CO2 partial pressure, rapid increases in light intensity caused profound photosynthetic oscillations. Salt stress reduced photosynthetic oscillations in leaves initially under both low- and high-light conditions and reduced the duration of oscillations by about 2 min. Besides, salt stress increased the threshold for CO2 partial pressure at which oscillations occurred. Salt stress increased TPU capacity without affecting Rubisco carboxylation and electron transport capacity, indicating the up-regulation of end-product synthesis capacity in photosynthesis. Thus salt stress may reduce photosynthetic oscillations by decreasing leaf internal CO2 partial pressure and/or increasing TPU capacity. Our results provide new insights into how salt stress modulates dynamic photosynthesis as controlled by CO2 availability and end-product synthesis.


Asunto(s)
Fotosíntesis , Estrés Salino , Solanum lycopersicum , Solanum lycopersicum/fisiología , Solanum lycopersicum/metabolismo , Solanum lycopersicum/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Triosas/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de los fármacos , Dióxido de Carbono/metabolismo , Fosfatos/metabolismo , Luz , Cloruro de Sodio/farmacología
13.
Plant Physiol ; 195(2): 924-939, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38366641

RESUMEN

Far-red radiation affects many plant processes, including reproductive organ abortion. Our research aimed to determine the role of apical dominance in far-red light-induced flower and fruit abortion in sweet pepper (Capsicum annuum L.). We conducted several climate room experiments where plants were grown under white- or red-rich LED light, with or without additional far-red light. Additional far-red light enhanced apical dominance: it increased auxin levels in the apices of dominant shoots, and caused a greater difference in internode length and apical auxin levels between dominant and subordinate shoots. Additional far-red light stimulated fruit abortion in intact plants but not in decapitated plants, suggesting a crucial role of shoot apices in this effect. However, reducing basipetal auxin transport in the stems with N-1-naphthylphthalamic acid did not influence far-red light-stimulated fruit abortion, although auxin levels in the stem were largely reduced. Applying the synthetic auxin 1-naphthaleneacetic acid on decapitated apices did not influence fruit abortion. However, applying the auxin biosynthesis inhibitor yucasin to shoot apices reduced fruit abortion regardless of the light conditions, accompanied by slight shoot growth retardation. These findings suggest that the basipetal auxin stream does not mediate far-red light-stimulated fruit abortion. Far-red light-stimulated fruit abortion was associated with reduced sucrose accumulation and lower invertase activities in flowers. We suggest that under additional far-red light conditions, increased auxin levels in shoot apices promote fruit abortion probably through enhanced competition for assimilates between apices and flowers, which limits assimilate import into flowers.


Asunto(s)
Capsicum , Flores , Frutas , Ácidos Indolacéticos , Luz , Capsicum/crecimiento & desarrollo , Capsicum/fisiología , Capsicum/efectos de la radiación , Capsicum/metabolismo , Flores/fisiología , Flores/crecimiento & desarrollo , Flores/efectos de la radiación , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Frutas/efectos de la radiación , Frutas/fisiología , Ácidos Indolacéticos/metabolismo , Luz Roja
14.
New Phytol ; 241(4): 1866-1876, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38124293

RESUMEN

Image-based high-throughput phenotyping promises the rapid determination of functional traits in large plant populations. However, interpretation of some traits - such as those related to photosynthesis or transpiration rates - is only meaningful if the irradiance absorbed by the measured leaves is known, which can differ greatly between different parts of the same plant and within canopies. No feasible method currently exists to rapidly measure absorbed irradiance in three-dimensional plants and canopies. We developed a method and protocols to derive absorbed irradiance at any visible part of a canopy with a thermal camera, by fitting a leaf energy balance model to transient changes in leaf temperature. Leaves were exposed to short light pulses (30 s) that were not long enough to trigger stomatal opening but strong enough to induce transient changes in leaf temperature that was proportional to the absorbed irradiance. The method was successfully validated against point measurements of absorbed irradiance in plant species with relatively simple architecture (sweet pepper, cucumber, tomato, and lettuce). Once calibrated, the model was used to produce absorbed irradiance maps from thermograms. Our method opens new avenues for the interpretation of plant responses derived from imaging techniques and can be adapted to existing high-throughput phenotyping platforms.


Asunto(s)
Cucumis sativus , Hojas de la Planta , Hojas de la Planta/fisiología , Fotosíntesis/fisiología , Plantas , Fenotipo
15.
Front Plant Sci ; 14: 1286547, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38155855

RESUMEN

Salinity is a current and growing problem, affecting crops worldwide by reducing yields and product quality. Plants have different mechanisms to adapt to salinity; some crops are highly studied, and their salinity tolerance mechanisms are widely known. However, there are other crops with commercial importance that still need characterization of their molecular mechanisms. Usually, transcription factors are in charge of the regulation of complex processes such as the response to salinity. MYB-TFs are a family of transcription factors that regulate various processes in plant development, and both central and specialized metabolism. MYB-TFs have been studied extensively as mediators of specialized metabolism, and some are master regulators. The influence of MYB-TFs on highly orchestrated mechanisms, such as salinity tolerance, is an attractive research target. The versatility of petunia as a model species has allowed for advances to be made in multiple fields: metabolomic pathways, quality traits, stress resistance, and signal transduction. It has the potential to be the link between horticultural crops and lab models, making it useful in translating discoveries related to the MYB-TF pathways into other crops. We present a phylogenetic tree made with Petunia axillaris and Petunia inflata R2R3-MYB subfamily sequences, which could be used to find functional conservation between different species. This work could set the foundations to improve salinity resistance in other commercial crops in later studies.

17.
Rev. int. med. cienc. act. fis. deporte ; 23(91): 45-59, jul. 2023. ilus, tab
Artículo en Inglés | IBECS | ID: ibc-226918

RESUMEN

The aim of the study was to adapt and validate the Sport Team Socialization Tactics Questionnaire (STSTQ) with amateur and semi-professional Spanish players. The participants were 437 male and female players aged 15 to 39 (M = 21.90; SD = 5.67). Confirmatory factor analysis was applied to test the three-factor structure: coach-initiated role communication tactics, serial socialization tactics and social inclusionary tactics. According to the results, the Spanish version of the STSTQ presented adequate index values in its original factor structure and acceptable internal consistency values. Moreover, the instrument presented adequate discriminating and concurrent validity and proved to be invariant regardless of the competitive level. These results suggest that the Spanish version of the STSTQ is a valid and reliable tool to assess socialization tactics in amateur and semi-professional team sports. (AU)


El objetivo del estudio era adaptar y validar el Cuestionario de Tácticas de Socialización para Equipos Deportivos (en inglés Sport Team Socialization Tactics Questionnarie, STSTQ) con jugadores españoles amateurs y semi-profesionales. Participaron 437 jugadores de fútbol de género masculino y femenino con edades comprendidas entre los 15-39 años (M = 21,90; DT = 5,67). Se realizó un análisis factorial confirmatorio para testar la estructura factorial compuesta por tres factores: tácticas de comunicación del rol del entrenador, tácticas de socialización en serie y tácticas sociales de inclusión. Los resultados mostraron que la versión española del STSTQ demuestra índices adecuados en su estructura factorial original y valores aceptables de consistencia interna. Además, el instrumento presentó una adecuada validez discriminante y concurrente y se mostró invariante en función del nivel competitivo. Estos resultados sugieren que la versión española del STSTQ es una herramienta válida y fiable para medir las tácticas de socialización en deportes colectivos amateurs y semi-profesionales. (AU)


Asunto(s)
Humanos , Masculino , Femenino , Adolescente , Adulto Joven , Adulto , Socialización , Encuestas y Cuestionarios , España
19.
Curr Biol ; 33(11): R471-R473, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37279677

RESUMEN

Ji et al. introduce vertical farming, a production-scale crop-growth system within an enclosed structure that maximizes space-use efficiency by growing plants vertically and precisely controls the plant environment.


Asunto(s)
Agricultura , Plantas , Granjas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA