Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1389593, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38895614

RESUMEN

Aims: Root system architecture (RSA) plays an important role in the plant's ability to sustain yield under abiotic stresses such as drought. Preceding crops (precrops) can affect the yield of the proceeding crop, partially by affecting the RSA. This experiment aims to explore the interactions between precrop identity, crop genotype and drought at early growth stages. Methods: Rhizotrons, sized 60 × 80 × 3.5 cm, were used to assess the early root growth of two winter wheat (Triticum aestivum L.) genotypes, using precrop-treated soil around the seedlings and differing water regimes. The rhizotrons were automatically imaged 3 times a week to track root development. Results: Precrop-treated soil affected the RSA and changes caused by the reduced water treatment (RWT) were different depending on the precrop. Largest of these was the 36% reduction in root depth after wheat, but 44% after OSR. This indicates that effects caused by the precrop can be simulated, at least partially, by transferring precrop-treated soils to controlled environments. The genotypes had differential RSA and reacted differently to the RWT, with Julius maintaining an 8.8-13.1% deeper root system compared to Brons in the RWT. In addition, the combined environmental treatment affected the genotypes differently. Conclusion: Our results could help explain discrepancies found from using precrops to enhance yield as they indicate differences in the preceding crop effect when experiencing drought stress. Further, these differences are affected by genotypic interactions, which can be used to select and adapt crop genotypes for specific crop rotations, depending on the year. Additionally, we have shown a viable method of stimulating a partial precrop effect at the seedling stage in a controlled greenhouse setting using field soil around the germinated seed.

2.
Funct Plant Biol ; 44(1): 76-93, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32480548

RESUMEN

New techniques and approaches have been developed for root phenotyping recently; however, rapid and repeatable non-invasive root phenotyping remains challenging. Here, we present GrowScreen-PaGe, a non-invasive, high-throughput phenotyping system (4 plants min-1) based on flat germination paper. GrowScreen-PaGe allows the acquisition of time series of the developing root systems of 500 plants, thereby enabling to quantify short-term variations in root system. The choice of germination paper was found to be crucial and paper☓root interaction should be considered when comparing data from different studies on germination paper. The system is suitable for phenotyping dicot and monocot plant species. The potential of the system for high-throughput phenotyping was shown by investigating phenotypic diversity of root traits in a collection of 180 rapeseed accessions and of 52 barley genotypes grown under control and nutrient-starved conditions. Most traits showed a large variation linked to both genotype and treatment. In general, root length traits contributed more than shape and branching related traits in separating the genotypes. Overall, results showed that GrowScreen-PaGe will be a powerful resource to investigate root systems and root plasticity of large sets of plants and to explore the molecular and genetic root traits of various species including for crop improvement programs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA