Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 6226, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043639

RESUMEN

Fluctuations in the initiation rate of transcription, the first step in gene expression, ensue from the stochastic behavior of the molecular process that controls transcription. In steady state, the regulatory process is often assumed to operate reversibly, i.e., in equilibrium. However, reversibility imposes fundamental limits to information processing. For instance, the assumption of equilibrium is difficult to square with the precision with which the regulatory process executes its task in eukaryotes. Here we provide evidence - from microscopic analyses of the transcription dynamics at a single gene copy of yeast - that the regulatory process for transcription is cyclic and irreversible (out of equilibrium). The necessary coupling to reservoirs of free energy occurs via sequence-specific transcriptional activators and the recruitment, in part, of ATP-dependent chromatin remodelers. Our findings may help explain how eukaryotic cells reconcile the dual but opposing requirements for fast regulatory kinetics and high regulatory specificity.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Transcripción Genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ensamble y Desensamble de Cromatina , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Cinética , Adenosina Trifosfato/metabolismo
2.
Nat Rev Mol Cell Biol ; 25(6): 422, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38580738
3.
Mol Cell ; 84(6): 1036-1048.e9, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38377994

RESUMEN

Single-molecule imaging inside living cells has revealed that transcription factors (TFs) bind to DNA transiently, but a long-standing question is how this transient binding is related to transcription activation. Here, we devised a microscopy method to simultaneously measure transient TF binding at a single locus and the effect of these binding events on transcription. We show that DNA binding of the yeast TF Gal4 activates transcription of a target gene within a few seconds, with at least ∼20% efficiency and with a high initiation rate of ∼1 RNA/s. Gal4 DNA dissociation decreases transcription rapidly. Moreover, at a gene with multiple binding sites, individual Gal4 molecules only rarely stay bound throughout the entire burst but instead frequently exchange during a burst to increase the transcriptional burst duration. Our results suggest a mechanism for enhancer regulation in more complex eukaryotes, where TF cooperativity and exchange enable robust and responsive transcription regulation.


Asunto(s)
Regulación de la Expresión Génica , Factores de Transcripción , Factores de Transcripción/metabolismo , Unión Proteica , Sitios de Unión , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Activación Transcripcional , ADN/metabolismo
4.
Trends Genet ; 40(2): 160-174, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38216391

RESUMEN

Recent imaging studies have captured the dynamics of regulatory events of transcription inside living cells. These events include transcription factor (TF) DNA binding, chromatin remodeling and modification, enhancer-promoter (E-P) proximity, cluster formation, and preinitiation complex (PIC) assembly. Together, these molecular events culminate in stochastic bursts of RNA synthesis, but their kinetic relationship remains largely unclear. In this review, we compare the timescales of upstream regulatory steps (input) with the kinetics of transcriptional bursting (output) to generate mechanistic models of transcription dynamics in single cells. We highlight open questions and potential technical advances to guide future endeavors toward a quantitative and kinetic understanding of transcription regulation.


Asunto(s)
Regulación de la Expresión Génica , Transcripción Genética , Regiones Promotoras Genéticas , Ensamble y Desensamble de Cromatina
5.
Mol Cell ; 83(23): 4205-4221.e9, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37995691

RESUMEN

Transcription of tRNA genes by RNA polymerase III (RNAPIII) is tuned by signaling cascades. The emerging notion of differential tRNA gene regulation implies the existence of additional regulatory mechanisms. However, tRNA gene-specific regulators have not been described. Decoding the local chromatin proteome of a native tRNA gene in yeast revealed reprogramming of the RNAPIII transcription machinery upon nutrient perturbation. Among the dynamic proteins, we identified Fpt1, a protein of unknown function that uniquely occupied RNAPIII-regulated genes. Fpt1 binding at tRNA genes correlated with the efficiency of RNAPIII eviction upon nutrient perturbation and required the transcription factors TFIIIB and TFIIIC but not RNAPIII. In the absence of Fpt1, eviction of RNAPIII was reduced, and the shutdown of ribosome biogenesis genes was impaired upon nutrient perturbation. Our findings provide support for a chromatin-associated mechanism required for RNAPIII eviction from tRNA genes and tuning the physiological response to changing metabolic demands.


Asunto(s)
ARN Polimerasa III , Proteínas de Saccharomyces cerevisiae , ARN Polimerasa III/genética , ARN Polimerasa III/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Cromatina/genética , Cromatina/metabolismo , Regulación Fúngica de la Expresión Génica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Transcripción Genética
6.
Res Sq ; 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37645793

RESUMEN

The spatiotemporal configuration of genes with distal regulatory elements, and the impact of chromatin mobility on transcription, remain unclear. Loop extrusion is an attractive model for bringing genetic elements together, but how this functionally interacts with transcription is also largely unknown. We combine live tracking of genomic loci and nascent transcripts with molecular dynamics simulations to assess the spatiotemporal arrangement of the Sox2 gene and its enhancer, in response to a battery of perturbations. We find a close link between chromatin mobility and transcriptional status: active elements display more constrained mobility, consistent with confinement within specialized nuclear sites, and alterations in enhancer mobility distinguish poised from transcribing alleles. Strikingly, we find that whereas loop extrusion and transcription factor-mediated clustering contribute to promoter-enhancer proximity, they have antagonistic effects on chromatin dynamics. This provides an experimental framework for the underappreciated role of chromatin dynamics in genome regulation.

7.
bioRxiv ; 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37162887

RESUMEN

The spatiotemporal configuration of genes with distal regulatory elements, and the impact of chromatin mobility on transcription, remain unclear. Loop extrusion is an attractive model for bringing genetic elements together, but how this functionally interacts with transcription is also largely unknown. We combine live tracking of genomic loci and nascent transcripts with molecular dynamics simulations to assess the 4D arrangement of the Sox2 gene and its enhancer, in response to a battery of perturbations. We find that alterations in chromatin mobility, not promoter-enhancer distance, is more informative about transcriptional status. Active elements display more constrained mobility, consistent with confinement within specialized nuclear sites, and alterations in enhancer mobility distinguish poised from transcribing alleles. Strikingly, we find that whereas loop extrusion and transcription factor-mediated clustering contribute to promoter-enhancer proximity, they have antagonistic effects on chromatin dynamics. This provides an experimental framework for the underappreciated role of chromatin dynamics in genome regulation.

8.
Nat Struct Mol Biol ; 30(5): 692-702, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37127821

RESUMEN

Transcriptional bursting has been linked to the stochastic positioning of nucleosomes. However, how bursting is regulated by the remodeling of promoter nucleosomes is unknown. Here, we use single-molecule live-cell imaging of GAL10 transcription in Saccharomyces cerevisiae to measure how bursting changes upon combined perturbations of chromatin remodelers, the transcription factor Gal4 and preinitiation complex components. Using dynamic epistasis analysis, we reveal how the remodeling of different nucleosomes regulates transcriptional bursting parameters. At the nucleosome covering the Gal4 binding sites, RSC and Gal4 binding synergistically facilitate each burst. Conversely, nucleosome remodeling at the TATA box controls only the first burst upon galactose induction. At canonical TATA boxes, the nucleosomes are displaced by TBP binding to allow for transcription activation even in the absence of remodelers. Overall, our results reveal how promoter nucleosome remodeling together with Gal4 and preinitiation complex binding regulates transcriptional bursting.


Asunto(s)
Nucleosomas , Proteínas de Saccharomyces cerevisiae , Nucleosomas/metabolismo , Ensamble y Desensamble de Cromatina , Epistasis Genética , Factores de Transcripción/metabolismo , Cromatina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética
9.
Mol Cell ; 83(10): 1573-1587.e8, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-37207624

RESUMEN

DNA supercoiling has emerged as a major contributor to gene regulation in bacteria, but how DNA supercoiling impacts transcription dynamics in eukaryotes is unclear. Here, using single-molecule dual-color nascent transcription imaging in budding yeast, we show that transcriptional bursting of divergent and tandem GAL genes is coupled. Temporal coupling of neighboring genes requires rapid release of DNA supercoils by topoisomerases. When DNA supercoils accumulate, transcription of one gene inhibits transcription at its adjacent genes. Transcription inhibition of the GAL genes results from destabilized binding of the transcription factor Gal4. Moreover, wild-type yeast minimizes supercoiling-mediated inhibition by maintaining sufficient levels of topoisomerases. Overall, we discover fundamental differences in transcriptional control by DNA supercoiling between bacteria and yeast and show that rapid supercoiling release in eukaryotes ensures proper gene expression of neighboring genes.


Asunto(s)
Saccharomyces cerevisiae , Transcripción Genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , ADN-Topoisomerasas de Tipo II/genética , ADN , ADN Bacteriano/genética , ADN Superhelicoidal/genética , ADN-Topoisomerasas de Tipo I/metabolismo
10.
Nucleic Acids Res ; 51(11): 5449-5468, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-36987884

RESUMEN

Many transcription factors (TFs) localize in nuclear clusters of locally increased concentrations, but how TF clustering is regulated and how it influences gene expression is not well understood. Here, we use quantitative microscopy in living cells to study the regulation and function of clustering of the budding yeast TF Gal4 in its endogenous context. Our results show that Gal4 forms clusters that overlap with the GAL loci. Cluster number, density and size are regulated in different growth conditions by the Gal4-inhibitor Gal80 and Gal4 concentration. Gal4 truncation mutants reveal that Gal4 clustering is facilitated by, but does not completely depend on DNA binding and intrinsically disordered regions. Moreover, we discover that clustering acts as a double-edged sword: self-interactions aid TF recruitment to target genes, but recruited Gal4 molecules that are not DNA-bound do not contribute to, and may even inhibit, transcription activation. We propose that cells need to balance the different effects of TF clustering on target search and transcription activation to facilitate proper gene expression.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Elife ; 112022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36250630

RESUMEN

Transcriptional rates are often estimated by fitting the distribution of mature mRNA numbers measured using smFISH (single molecule fluorescence in situ hybridization) with the distribution predicted by the telegraph model of gene expression, which defines two promoter states of activity and inactivity. However, fluctuations in mature mRNA numbers are strongly affected by processes downstream of transcription. In addition, the telegraph model assumes one gene copy but in experiments, cells may have two gene copies as cells replicate their genome during the cell cycle. While it is often presumed that post-transcriptional noise and gene copy number variation affect transcriptional parameter estimation, the size of the error introduced remains unclear. To address this issue, here we measure both mature and nascent mRNA distributions of GAL10 in yeast cells using smFISH and classify each cell according to its cell cycle phase. We infer transcriptional parameters from mature and nascent mRNA distributions, with and without accounting for cell cycle phase and compare the results to live-cell transcription measurements of the same gene. We find that: (i) correcting for cell cycle dynamics decreases the promoter switching rates and the initiation rate, and increases the fraction of time spent in the active state, as well as the burst size; (ii) additional correction for post-transcriptional noise leads to further increases in the burst size and to a large reduction in the errors in parameter estimation. Furthermore, we outline how to correctly adjust for measurement noise in smFISH due to uncertainty in transcription site localisation when introns cannot be labelled. Simulations with parameters estimated from nascent smFISH data, which is corrected for cell cycle phases and measurement noise, leads to autocorrelation functions that agree with those obtained from live-cell imaging.


Asunto(s)
Variaciones en el Número de Copia de ADN , Transcripción Genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Hibridación Fluorescente in Situ , Dosificación de Gen , Ciclo Celular/genética , Procesos Estocásticos
12.
Genes Dev ; 36(11-12): 699-717, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35710138

RESUMEN

How distal regulatory elements control gene transcription and chromatin topology is not clearly defined, yet these processes are closely linked in lineage specification during development. Through allele-specific genome editing and chromatin interaction analyses of the Sox2 locus in mouse embryonic stem cells, we found a striking disconnection between transcriptional control and chromatin architecture. We traced nearly all Sox2 transcriptional activation to a small number of key transcription factor binding sites, whose deletions have no effect on promoter-enhancer interaction frequencies or topological domain organization. Local chromatin architecture maintenance, including at the topologically associating domain (TAD) boundary downstream from the Sox2 enhancer, is widely distributed over multiple transcription factor-bound regions and maintained in a CTCF-independent manner. Furthermore, partial disruption of promoter-enhancer interactions by ectopic chromatin loop formation has no effect on Sox2 transcription. These findings indicate that many transcription factors are involved in modulating chromatin architecture independently of CTCF.


Asunto(s)
Elementos de Facilitación Genéticos , Regiones Promotoras Genéticas , Factores de Transcripción SOXB1/genética , Animales , Cromatina , Regulación del Desarrollo de la Expresión Génica , Ratones , Factores de Transcripción/metabolismo
13.
Biophys J ; 121(9): 1583-1592, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35337845

RESUMEN

Transcription, the process of copying genetic information from DNA to messenger RNA, is regulated by sequence-specific DNA-binding proteins known as transcription factors (TFs). Recent advances in single-molecule tracking (SMT) technologies have enabled visualization of individual TF molecules as they diffuse and interact with the DNA in the context of living cells. These SMT studies have uncovered multiple populations of DNA-binding events characterized by their distinctive DNA residence times. In this perspective, we review recent insights into how these residence times relate to specific and non-specific DNA binding, as well as the contribution of TF domains on the DNA-binding dynamics. We discuss different models that aim to link transient DNA binding by TFs to bursts of transcription and present an outlook for how future advances in microscopy development may broaden our understanding of the dynamics of the molecular steps that underlie transcription activation.


Asunto(s)
Proteínas de Unión al ADN , Factores de Transcripción , Sitios de Unión , ADN/química , Proteínas de Unión al ADN/metabolismo , Unión Proteica , Imagen Individual de Molécula , Factores de Transcripción/metabolismo
14.
Nucleic Acids Res ; 50(4): 2143-2156, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35137218

RESUMEN

The coexistence of DNA replication and transcription during S-phase requires their tight coordination to prevent harmful conflicts. While extensive research revealed important mechanisms for minimizing these conflicts and their consequences, little is known regarding how the replication and transcription machinery are coordinated in real-time. Here, we developed a live-cell imaging approach for the real-time monitoring of replisome progression and transcription dynamics during a transcription-replication encounter. We found a wave of partial transcriptional repression ahead of the moving replication fork, which may contribute to efficient fork progression through the transcribed gene. Real-time detection of conflicts revealed their negative impact on both processes, leading to fork stalling or slowdown as well as lower transcription levels during gene replication, with different trade-offs observed in defined subpopulations of cells. Our real-time measurements of transcription-replication encounters demonstrate how these processes can proceed simultaneously while maintaining genomic stability, and how conflicts can arise when coordination is impaired.


Asunto(s)
Replicación del ADN , Transcripción Genética , Replicación del ADN/genética , Inestabilidad Genómica , Humanos , Replicón , Fase S/genética
15.
EMBO J ; 40(23): e108903, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34661296

RESUMEN

Nucleosome-depleted regions (NDRs) at gene promoters support initiation of RNA polymerase II transcription. Interestingly, transcription often initiates in both directions, resulting in an mRNA and a divergent non-coding (DNC) transcript of unclear purpose. Here, we characterized the genetic architecture and molecular mechanism of DNC transcription in budding yeast. Using high-throughput reverse genetic screens based on quantitative single-cell fluorescence measurements, we identified the Hda1 histone deacetylase complex (Hda1C) as a repressor of DNC transcription. Nascent transcription profiling showed a genome-wide role of Hda1C in repression of DNC transcription. Live-cell imaging of transcription revealed that mutations in the Hda3 subunit increased the frequency of DNC transcription. Hda1C contributed to decreased acetylation of histone H3 in DNC transcription regions, supporting DNC transcription repression by histone deacetylation. Our data support the interpretation that DNC transcription results as a consequence of the NDR-based architecture of eukaryotic promoters, but that it is governed by locus-specific repression to maintain genome fidelity.


Asunto(s)
Histona Desacetilasas/metabolismo , Histonas/metabolismo , ARN Polimerasa II/metabolismo , ARN no Traducido/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transcripción Genética , Acetilación , Regulación Fúngica de la Expresión Génica , Histona Desacetilasas/genética , Histonas/genética , Nucleosomas , Regiones Promotoras Genéticas , ARN Polimerasa II/genética , ARN no Traducido/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
16.
STAR Protoc ; 2(3): 100647, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34278333

RESUMEN

Single-molecule RNA fluorescence in situ hybridization (smFISH) allows subcellular visualization, localization, and quantification of endogenous RNA molecules in fixed cells. The spatial and intensity information of each RNA can be used to distinguish mature from nascent transcripts inside each cell, revealing both past and instantaneous transcriptional activity. Here, we describe an optimized protocol for smFISH in Saccharomyces cerevisiae with optimized lyticase digestion time and hybrization steps for more homogenous results. For complete details on the use and execution of this protocol, please refer to Donovan et al. (2019).


Asunto(s)
Hibridación Fluorescente in Situ/métodos , Imagen Molecular/métodos , Saccharomyces cerevisiae/genética , Imagen Individual de Molécula/métodos , Regulación Fúngica de la Expresión Génica , Sondas ARN/genética , ARN de Hongos
17.
STAR Protoc ; 1(3): 100142, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33377036

RESUMEN

This protocol describes how to image fluorescently tagged proteins, RNA, or DNA inside living Saccharomyces cerevisiae cells at the single-molecule level. Imaging inside living cells, as opposed to fixed materials, gives access to real-time kinetic information. Although various single-molecule imaging applications are discussed, we focus on imaging of gene transcription at the single-RNA level. To obtain the best possible results, it is important that both imaging parameters and yeast culture conditions are optimized. Here, both aspects are described. For complete details on the use and execution of this protocol, please refer to Lenstra et al. (2015) and Donovan et al. (2019).


Asunto(s)
Imagen Óptica/métodos , Imagen Individual de Molécula/métodos , Fluorescencia , Hibridación Fluorescente in Situ/métodos , Microscopía Fluorescente/métodos , ARN Mensajero/genética , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética/fisiología
18.
Mol Cell ; 79(2): 207-220.e8, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32544389

RESUMEN

RNA polymerase II (RNA Pol II) contains a disordered C-terminal domain (CTD) whose length enigmatically correlates with genome size. The CTD is crucial to eukaryotic transcription, yet the functional and evolutionary relevance of this variation remains unclear. Here, we investigate how CTD length and disorder influence transcription. We find that length modulates the size and frequency of transcriptional bursting. Disorder is highly conserved and facilitates CTD-CTD interactions, an ability we show is separable from protein sequence and necessary for efficient transcription. We build a data-driven quantitative model, simulations of which recapitulate experiments and support that CTD length promotes initial polymerase recruitment to the promoter and slows down its release from it and that CTD-CTD interactions enable recruitment of multiple polymerases. Our results reveal how these parameters provide access to a range of transcriptional activity, offering a new perspective for the mechanistic significance of CTD length and disorder in transcription across eukaryotes.


Asunto(s)
Dominio Catalítico , ARN Polimerasa II/metabolismo , Saccharomycetales/enzimología , Saccharomycetales/genética , Transcripción Genética , Secuencia de Aminoácidos , Modelos Genéticos , ARN Polimerasa II/química , RNA-Seq , Relación Estructura-Actividad , Transcriptoma
19.
Curr Opin Chem Biol ; 51: 122-129, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31284216

RESUMEN

Visualization of transcription in living cells has taught us that genes are often transcribed in bursts, with periods of gene activity interspersed by periods of inactivity. Recently, technological advances in live-cell imaging have provided a more detailed picture of the characteristics of transcriptional bursts, and have allowed direct visualization of the upstream regulatory steps of bursting at single-molecule resolution. In this review, we highlight the latest insights into transcription dynamics and we discuss recent developments in understanding the regulation of transcriptional bursting through the binding kinetics of transcription factors, enhancer-promoter interactions and clustering/phase separation of the transcriptional machinery.


Asunto(s)
Expresión Génica , Transcripción Genética , Factores de Transcripción/metabolismo
20.
EMBO J ; 38(12)2019 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-31101674

RESUMEN

Transcription factors show rapid and reversible binding to chromatin in living cells, and transcription occurs in sporadic bursts, but how these phenomena are related is unknown. Using a combination of in vitro and in vivo single-molecule imaging approaches, we directly correlated binding of the Gal4 transcription factor with the transcriptional bursting kinetics of the Gal4 target genes GAL3 and GAL10 in living yeast cells. We find that Gal4 dwell time sets the transcriptional burst size. Gal4 dwell time depends on the affinity of the binding site and is reduced by orders of magnitude by nucleosomes. Using a novel imaging platform called orbital tracking, we simultaneously tracked transcription factor binding and transcription at one locus, revealing the timing and correlation between Gal4 binding and transcription. Collectively, our data support a model in which multiple RNA polymerases initiate transcription during one burst as long as the transcription factor is bound to DNA, and bursts terminate upon transcription factor dissociation.


Asunto(s)
Nucleosomas/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional , Sitios de Unión , Metabolismo de los Hidratos de Carbono/genética , Galactoquinasa/genética , Galactoquinasa/metabolismo , Galactosa/metabolismo , Regulación Fúngica de la Expresión Génica , Imagen Molecular/métodos , Organismos Modificados Genéticamente , Unión Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Análisis de la Célula Individual/métodos , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Transcripción Genética , Activación Transcripcional/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA